The number of claims follows a negative binomial distribution with parameters [math]\beta[/math] and r, where [math]\beta[/math] is unknown and r is known. You wish to estimate [math]\beta[/math] based on [math]n[/math] observations, where [math]x[/math] is the mean of these observations.
Determine the maximum likelihood estimate of [math]\beta[/math] .
- [math]\frac{\overline{x}}{r^2}[/math]
- [math]\frac{\overline{x}}{r}[/math]
- [math]\overline{x}[/math]
- [math]r\overline{x}[/math]
- [math]r^2\overline{x}[/math]
Losses come from a mixture of an exponential distribution with mean 100 with probability p and an exponential distribution with mean 10,000 with probability 1 − p.
Losses of 100 and 2000 are observed.
Determine the likelihood function of p.
- [math]\left (\frac{pe^{-1}}{100} \frac{(1-p)e^{-0.01}}{10,000}\right) \left( \frac{pe^{-20}}{100}\frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
- [math]\left (\frac{pe^{-1}}{100} \frac{(1-p)e^{-0.01}}{10,000}\right) + \left( \frac{pe^{-20}}{100}\frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
- [math]\left (\frac{pe^{-1}}{100}+ \frac{(1-p)e^{-0.01}}{10,000}\right) \left( \frac{pe^{-20}}{100} + \frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
- [math]\left (\frac{pe^{-1}}{100} +\frac{(1-p)e^{-0.01}}{10,000}\right) + \left( \frac{pe^{-20}}{100}+\frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
- [math]p\left (\frac{pe^{-1}}{100} +\frac{(1-p)e^{-0.01}}{10,000}\right) + (1-p)\left( \frac{pe^{-20}}{100}+\frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
You are given the following three observations:
0.74 0.81 0.95
You fit a distribution with the following density function to the data:
Calculate the maximum likelihood estimate of [math]p[/math].
- 4.0
- 4.1
- 4.2
- 4.3
- 4.4
You are given:
-
The distribution of the number of claims per policy during a one-year period for 10,000 insurance policies is:
Number of Claims per Policy Number of Policies 0 5000 1 5000 2 or more 0 - You fit a binomial model with parameters m and q using the method of maximum likelihood.
Calculate the maximum value of the loglikelihood function when [math]m = 2[/math].
- −10,397
- −7,781
- −7,750
- −6,931
- −6,730
For a group of policies, you are given:
-
Losses follow the distribution function
[[math]] F(x) = 1-\theta/x, \, x \gt \theta [[/math]]
-
A sample of 20 losses resulted in the following:
Interval Number of losses (0,10] 9 (10,25] 6 (25,[math]\infty[/math]) 5
Calculate the maximum likelihood estimate of [math]\theta[/math].
- 5.00
- 5.50
- 5.75
- 6.00
- 6.25
You are given:
- The random variable X has probability density function [[math]] f(x) = \alpha (1500)^{\alpha} (1500 + x)^{-(\alpha+1)}, \, \alpha \gt 0, \, x \gt 0[[/math]]
- Five sample observations are: 50 250 450 650 850
Calculate the maximum likelihood estimate of [math]\alpha [/math]
- 0.16
- 0.79
- 1.85
- 2.91
- 3.97
You are given the following observations on 185 small business policies:
Number of Claims | Number of Policies |
0 | 80 |
1 or more | 105 |
The number of claims per policy follows a Poisson distribution with parameter [math]\lambda [/math].
Using the maximum likelihood estimate of [math]\lambda [/math] , determine the estimated probability of a policy having fewer than two claims.
- 0.79
- 0.84
- 0.89
- 0.95
- 0.98
You are given:
- A sample of losses is: 600 700 900
- No information is available about losses of 500 or less.
- Losses are assumed to follow an exponential distribution with mean [math]\theta [/math].
Calculate the maximum likelihood estimate of [math]\theta[/math]
- 233
- 400
- 500
- 733
- 1233
You are given:
- Losses follow a single-parameter Pareto distribution with density function: [[math]]f(x) = \frac{\alpha}{x^{\alpha+1}}, \, x\gt1, \, 0 \lt \alpha \lt \infty [[/math]]
- A random sample of size five produced three losses with values 3, 6 and 14, and two losses exceeding 25.
Calculate the maximum likelihood estimate of [math]\alpha [/math]
- 0.25
- 0.30
- 0.34
- 0.38
- 0.42
You are given:
- Low-hazard risks have an exponential claim size distribution with mean [math]\theta[/math].
- Medium-hazard risks have an exponential claim size distribution with mean [math]2 \theta [/math].
- High-hazard risks have an exponential claim size distribution with mean [math]3 \theta [/math] .
- No claims from low-hazard risks are observed.
- Three claims from medium-hazard risks are observed, of sizes 1, 2 and 3.
- One claim from a high-hazard risk is observed, of size 15.
Calculate the maximum likelihood estimate of [math]\theta[/math].
- 1
- 2
- 3
- 4
- 5