Prove Proposition \ref{thm 6.6.1}, \ref{thm 6.6.2}, \ref{thm 6.6.3}, and \ref{thm 6.6.5}.
Perform each of the indicated operations and write the answer in the form [math]x + iy[/math].
- [math](3+i4)+(7-i3)[/math]
- [math](-2+i\sqrt2)+(-2-i\sqrt2)[/math]
- [math](-2+i\sqrt2)(-2-i\sqrt2)[/math]
- [math]\frac{3-i7}{2+i}[/math]
- [math](a+ib)(2a-i2b)[/math]
- [math]2(4-i3)+7(-2+i5)[/math]
- [math]\frac{-3+i4}{4-i3}[/math]
- [math]\frac{7+i}{-2-i5}[/math]
- [math]\frac{a+ib}{3a-i3b}[/math]
- [math]\frac{-2-i}{2-i}[/math]
- [math]\frac{25}{3-i4}[/math]
- [math](2+i7)(2-i5)[/math].
Let [math]z_1=2+i3[/math], [math]z_2=-1-i[/math], and [math]z_3=i[/math]. Plot each of the following complex numbers in the complex plane.
- [math]z_1[/math]
- [math]z_2[/math]
- [math]z_1+z_2[/math]
- [math]z_1z_3[/math]
- [math]z_1-2z_2[/math]
- [math]\frac{z_1}{z_2}[/math].
Find the complex conjugate of each of the following complex numbers.
- lab{6.6.4a} [math]2-i3[/math]
- lab{6.6.4b} [math]5+i4[/math]
- lab{6.6.4c} [math](2-i3)+(5+i4)[/math]
- lab{6.6.4d} [math](2-i3)(5+i4)[/math]
- lab{6.6.4e} [math]4(2-i3)[/math]
- [math]-7[/math]
- [math]2i[/math].
- In Problem Exercise, compute the sum of conjugates formed in \ref{ex6.6.4a} and \ref{ex6.6.4b}, and compare with the conjugate of the sum in \ref{ex6.6.4c}.
- In Problem Exercise, compute the product of the conjugates found in \ref{ex6.6.4a} and \ref{ex6.6.4b}, and compare with the conjugate of the product found in \ref{ex6.6.4d}.
- In Problem Exercise, multiply the conjugate found in \ref{ex6.6.4a} by [math]4[/math], and compare with the answer found in \ref{ex6.6.4e}.
For any complex numbers [math]z_1[/math] and [math]z_2[/math], prove that
- [math]\conj{z_1+z_2} = \conj{z_1} + \conj{z_2}[/math]
- [math]\conj{z_1z_2} = \conj{z_1}\;\conj{z_2}[/math]
- [math]\conj{kz_1} = k\conj{z_1}[/math], [math]k[/math] real.
If [math]a[/math] is real and positive and [math]z[/math] complex, prove that [math]|az| = a|z|[/math].
- Prove that the sum and product of two complex numbers which are conjugates of each other are real.
- Prove that the difference of two complex numbers which are conjugates of each other is pure imaginary.
Graph all points [math]z[/math] satisfying
- [math]|z|=2[/math]
- [math]|z| \lt 3[/math]
- [math]|z| \gt 1[/math]
- [math]|z|\leq2[/math]
- [math]2 \lt |z| \lt 4[/math]
- [math]|z-2|=2[/math]
- [math]|z-z_0|=3[/math], for a fixed [math]z_0[/math]
- [math]1\leq|z-3|\leq2[/math].
Given two complex numbers [math]z_1[/math] and [math]z_2[/math], plot them and give a geometric interpretation of [math]|z_1-z_2|[/math].