Draw the following intervals and identify them as bounded or unbounded, closed or open, or neither: [math](2, 4)[/math], [math][3, 5][/math], [math](-\infty, -2][/math], [math][1.5, 2.5)[/math], [math](\sqrt2, \pi)[/math].
Draw each of the following subsets of [math]R[/math]. For those that are given in terms of absolute values write an alternative description that does not use the absolute value.
- Set of all [math]x[/math] such that [math]4 \lt x \leq 7.5[/math].
- Set of all [math]x[/math] such that [math]0 \lt x \lt \infty[/math].
- Set of all [math]x[/math] such that [math]5 \leq x \lt 8[/math].
- Set of all [math]x[/math] such that [math]|x| \gt 2[/math].
- Set of all [math]y[/math] such that [math]1 \lt |y| \lt 3[/math].
- Set of all [math]z[/math] such that [math]|z - 2| \leq 1[/math].
- Set of all [math]x[/math] such that [math]|x - a| \gt 0[/math].
- Set of all [math]u[/math] such that [math]1 \lt |u - 1| \lt 5[/math].
Prove the following facts about inequalities. [Hint:\ [[guide:A5dd35d44b#axiom.viii [[guide:A5dd35d44b#axiom.ix [[guide:A5dd35d44b#axiom.x |||Use,]],]],]], and the meanings of [math]\geq[/math] and [math]\leq[/math]. In each problem you will have to consider several cases separately, e.g. [math]a \gt 0[/math] and [math]a = 0[/math].]
- If [math]a \leq b[/math], then [math]a + c \leq b + c[/math].
- If [math]a \geq b[/math], then [math]a + c \geq b + c[/math].
- If [math]a \leq b[/math] and [math]c \geq 0[/math], then [math]ac \leq bc[/math].
- If [math]a \leq b[/math] and [math] c \leq 0[/math], then [math]ac \geq bc[/math].
Prove that [math]a[/math] is positive (negative) if and only if [math]\frac1a[/math] is positive (negative).
If [math]0 \lt a \lt b[/math], prove that [math]\frac1b \lt \frac1a[/math].
If [math]a \gt c[/math] and [math]b \lt 0[/math], prove that [math]\frac ab \lt \frac cb[/math].
If [math]a \lt b \lt c[/math], prove that
Does the set [math]Z[/math] of integers have the Least Upper Bound Property? That is, if a nonempty subset of [math]Z[/math] has an upper bound, does it have a smallest one?
Show that if [math]0 \leq a \leq b[/math], then [math]0 \leq \sqrt{a} \leq \sqrt{b}[/math].
Prove that [math]a = b[/math] if and only if [math]a \leq b[/math] and [math]b \leq a[/math].