A solid [math]Q[/math] has a flat base which is the region in the plane bounded by the parabola [math]y^2=x[/math] and the line [math]x=4[/math]. Each cross-section perpendicular to the [math]x[/math]-axis is a square with one edge lying in the base. Find the volume of [math]Q[/math].
The solid [math]P[/math] has the same base as [math]Q[/math] in Problem Exercise, but each cross-section perpendicular to the [math]x[/math]-axis is a semicircular disk with diameter lying in the base. Compare [math]\mbox{''vol''}(P)[/math].
A tetrahedron is a solid with for vertices and four flat triangular faces. Let [math]T[/math] be a tetrahedron which has three mutually perpendicular edges of lengths [math]3[/math], [math]4[/math], and [math]10[/math] meeting at a vertex. Draw a picture of [math]T[/math] and compute its volume.
The graph of the function [math]f(x) = \sqrt{a^2-x^2}[/math] is a semicircle of radius [math]a[/math]. Use this function and an integral formula for the volume of a solid of revolution to compute the volume of a sphere of radius [math]a[/math].
Find the volume of the ellipsoid of revolution obtained by rotating about the [math]x[/math]-axis the region bounded by the ellipse [math]\frac{x^2}{a^2}+\frac{y^2}{b^2} = 1[/math].
Sketch and find the volume of each of the solids of revolution obtained by rotating about the [math]x[/math]-axis the region bounded by the indicated curves and lines.
- lab{8.4.6a} [math]y=x^2-1[/math], [math]x=1[/math], [math]x=2[/math], and the [math]x[/math]-axis.
- [math]y=\frac12x[/math], [math]x=8[/math], and the [math]x[/math]-axis.
- [math]y=1+2x-x^2[/math], [math]x=0[/math], [math]y=0[/math], and [math]x=2[/math].
- [math]y=\frac1{x^2}[/math], [math]x=1[/math], [math]x=2[/math], and the [math]x[/math]-axis.
- [math]y=1-x^2[/math] and the [math]x[/math]-axis.
Find the volume of a right circular cone of height [math]h[/math] and with a base of radius [math]a[/math].
- lab{8.4.8a} Find the volume of the solid of revolution obtained by rotating about the [math]y[/math]-axis the region bounded by the [math]x[/math]-axis, and the graphs of [math]y=x^2-1[/math] and [math]y=3[/math].
- Using \ref{ex8.4.8a}, find the volume generated by rotating the region in Problem \ref{ex8.4.6a} about the [math]y[/math]-axis. (Use Example \ref{exam 8.4.4} as a model.)
Using the method of cylindrical shells, find the volume of the solid of revolution obtained by rotating each of the regions is Problem Exercise about the [math]y[/math]-axis.
Sketch the region [math]R[/math] in the plane which is bounded by the parabola [math](y-1)^2 = x[/math], the line [math]y=2[/math], and the [math]x[/math]-axis and [math]y[/math]-axis. Find the volume of the solid of revolution obtained by rotating [math]R[/math] about the [math]x[/math]-axis, using
- formula \ref{thm 8.4.2} twice, i.e., [math]\pi \int_a^b y^2dx[/math] once with [math]y-1=\sqrt{x}[/math] and again with [math]y-1=-\sqrt{x}[/math].
- the counterpart of formula \ref{thm 8.4.3}, i.e., the method of cylindrical shells, for functions of [math]y[/math].