⧼exchistory⧽
To view all exercises, please subscribe to guide
17 exercise(s) shown, 21 hidden
May 13'23

The number of claims follows a negative binomial distribution with parameters [math]\beta[/math] and r, where [math]\beta[/math] is unknown and r is known. You wish to estimate [math]\beta[/math] based on [math]n[/math] observations, where [math]x[/math] is the mean of these observations.

Determine the maximum likelihood estimate of [math]\beta[/math] .

  • [math]\frac{\overline{x}}{r^2}[/math]
  • [math]\frac{\overline{x}}{r}[/math]
  • [math]\overline{x}[/math]
  • [math]r\overline{x}[/math]
  • [math]r^2\overline{x}[/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 13'23

Losses come from a mixture of an exponential distribution with mean 100 with probability p and an exponential distribution with mean 10,000 with probability 1 − p.

Losses of 100 and 2000 are observed.

Determine the likelihood function of p.

  • [math]\left (\frac{pe^{-1}}{100} \frac{(1-p)e^{-0.01}}{10,000}\right) \left( \frac{pe^{-20}}{100}\frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
  • [math]\left (\frac{pe^{-1}}{100} \frac{(1-p)e^{-0.01}}{10,000}\right) + \left( \frac{pe^{-20}}{100}\frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
  • [math]\left (\frac{pe^{-1}}{100}+ \frac{(1-p)e^{-0.01}}{10,000}\right) \left( \frac{pe^{-20}}{100} + \frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
  • [math]\left (\frac{pe^{-1}}{100} +\frac{(1-p)e^{-0.01}}{10,000}\right) + \left( \frac{pe^{-20}}{100}+\frac{(1-p)e^{-0.2}}{10,000}\right)[/math]
  • [math]p\left (\frac{pe^{-1}}{100} +\frac{(1-p)e^{-0.01}}{10,000}\right) + (1-p)\left( \frac{pe^{-20}}{100}+\frac{(1-p)e^{-0.2}}{10,000}\right)[/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 13'23

You are given the following three observations:

0.74  0.81  0.95

You fit a distribution with the following density function to the data:

[[math]] f(x) = (p+1)x^p, \, 0 \lt x \lt 1, p \gt -1. [[/math]]

Calculate the maximum likelihood estimate of [math]p[/math].

  • 4.0
  • 4.1
  • 4.2
  • 4.3
  • 4.4

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 13'23

You are given:

  1. The distribution of the number of claims per policy during a one-year period for 10,000 insurance policies is:
    Number of Claims per Policy Number of Policies
    0 5000
    1 5000
    2 or more 0
  2. You fit a binomial model with parameters m and q using the method of maximum likelihood.

Calculate the maximum value of the loglikelihood function when [math]m = 2[/math].

  • −10,397
  • −7,781
  • −7,750
  • −6,931
  • −6,730

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 13'23

For a group of policies, you are given:

  1. Losses follow the distribution function
    [[math]] F(x) = 1-\theta/x, \, x \gt \theta [[/math]]
  2. A sample of 20 losses resulted in the following:
    Interval Number of losses
    (0,10] 9
    (10,25] 6
    (25,[math]\infty[/math]) 5

Calculate the maximum likelihood estimate of [math]\theta[/math].

  • 5.00
  • 5.50
  • 5.75
  • 6.00
  • 6.25

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 13'23

You are given:

  1. The random variable X has probability density function
    [[math]] f(x) = \alpha (1500)^{\alpha} (1500 + x)^{-(\alpha+1)}, \, \alpha \gt 0, \, x \gt 0[[/math]]
  2. Five sample observations are:
    50 250 450 650 850

Calculate the maximum likelihood estimate of [math]\alpha [/math]

  • 0.16
  • 0.79
  • 1.85
  • 2.91
  • 3.97

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 13'23

You are given the following observations on 185 small business policies:

Number of Claims Number of Policies
0 80
1 or more 105


The number of claims per policy follows a Poisson distribution with parameter [math]\lambda [/math].

Using the maximum likelihood estimate of [math]\lambda [/math] , determine the estimated probability of a policy having fewer than two claims.

  • 0.79
  • 0.84
  • 0.89
  • 0.95
  • 0.98

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 14'23

You are given:

  1. A sample of losses is: 600 700 900
  2. No information is available about losses of 500 or less.
  3. Losses are assumed to follow an exponential distribution with mean [math]\theta [/math].

Calculate the maximum likelihood estimate of [math]\theta[/math]

  • 233
  • 400
  • 500
  • 733
  • 1233

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 13'23

You are given:

  1. Losses follow a single-parameter Pareto distribution with density function:
    [[math]]f(x) = \frac{\alpha}{x^{\alpha+1}}, \, x\gt1, \, 0 \lt \alpha \lt \infty [[/math]]
  2. A random sample of size five produced three losses with values 3, 6 and 14, and two losses exceeding 25.

Calculate the maximum likelihood estimate of [math]\alpha [/math]

  • 0.25
  • 0.30
  • 0.34
  • 0.38
  • 0.42

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

May 13'23

You are given:

  1. Low-hazard risks have an exponential claim size distribution with mean [math]\theta[/math].
  2. Medium-hazard risks have an exponential claim size distribution with mean [math]2 \theta [/math].
  3. High-hazard risks have an exponential claim size distribution with mean [math]3 \theta [/math] .
  4. No claims from low-hazard risks are observed.
  5. Three claims from medium-hazard risks are observed, of sizes 1, 2 and 3.
  6. One claim from a high-hazard risk is observed, of size 15.

Calculate the maximum likelihood estimate of [math]\theta[/math].

  • 1
  • 2
  • 3
  • 4
  • 5

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.