Show by means of an example that half of \ref{thm 5.2.3} is not enough. That is, define two functions [math]f[/math] and [math]g[/math] such that [math]f(g(x)) = x[/math], for every [math]x[/math] is the domain of [math]g[/math], but [math]g \ne f^{-1}[/math].
Prove that [math]\lim_{x\goesto0} \frac{e^x-1}x = 1[/math], using [math]\frac{d}{dx} e^x = e^x[/math] and the definition of the derivative at [math]0[/math].
A function of [math]x[/math] is a solution of a differential equation if it and its derivatives make the equation true. For what value (or values) of [math]m[/math] is [math]y = e^{mx}[/math] a solution of [math]\frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + 2y = 0[/math]?
Find each of the following limits.
- [math]\lim_{n\goesto\infty} \left(1+ \frac1n\right)^{2n}[/math], \quad [math]n[/math] an integer.
- [math]\lim_{n\goesto\infty} \left(1+ \frac1x\right)^{-3x}[/math], \quad [math]x[/math] an integer.
Let [math]f[/math] be a function differentiable on some unbounded interval [math](a, \infty)[/math]. Prove that if [math]\lim_{x\goesto\infty} [f(x) + f^\prime(x)] = L[/math], then [math]\lim_{x\goesto\infty} f(x) = L[/math]. [Hint: Consider the quotient [math]\frac{e^xf(x)}{e^x}[/math].]