In each of the following integrals evaluate [math]F^\prime (t)[/math]. Do not attempt to first find an antiderivative.
- [math]F(t) = \int_0^t \sqrt{1+x^3} \; dx[/math].
- [math]F(t) = \int_t^1 \frac1{1+x^2} \; dx[/math].
- [math]F(t) = \int_0^{2t+1} \frac1{1+x^2} \; dx[/math].
- [math]F(t) = \int_t^{t^2} \frac1{x^2+x+1} \; dx. \left(''Hint:'' \int_t^{t^2} f = \int_t^1 f + \int_1^{t^2} f. \right)[/math]
Is there anything wrong with the computation
If so, what?
In each of the following, find the area of the subset [math]P[/math] of the [math]xy[/math]-plane bounded by the curve [math]y=f(x)[/math], the [math]x[/math]-axis, and the lines [math]x=a[/math] and [math]x=b[/math]. Sketch the curve and the subset [math]P[/math].
- [math]f(x) = x^2+1[/math], [math]a = -1[/math], and [math]b = 2[/math].
- [math]f(x) = x^2+2x[/math], [math]a = 0[/math], and [math]b = 2[/math].
- [math]f(x) = \frac12x+1[/math], [math]a = 2[/math], and [math]b = 4[/math].
- [math]f(x) = x^3[/math], [math]a = 0[/math], and [math]b = 2[/math].
- [math]f(x) = x^3-2x^2+x[/math], [math]a = 0[/math], and [math]b = 2[/math].
Find the derivative of the function [math]F[/math] defined by [math]F(x) = \int_0^x \frac1{t^2+1} \; dt[/math]. Sketch the graph of [math]F[/math] using the techniques of curve sketching discussed in Section \secref{2.1}. Label and maximum, minimum, or critical points and any points of inflection. What is the domain of [math]F[/math]? [math]\left( \mbox{Do not attempt to find an explicit antiderivative of [/math]\frac1{t^2+1}[math].} \right)[/math]