⧼exchistory⧽
To view all exercises, please subscribe to guide
15 exercise(s) shown, 11 hidden
ABy Admin
May 07'23

An insurance policy pays a total medical benefit consisting of two parts for each claim. Let [math]X[/math] represent the part of the benefit that is paid to the surgeon, and let [math]Y[/math] represent the part that is paid to the hospital. The variance of [math]X[/math] is 5000, the variance of [math]Y[/math] is 10,000, and the variance of the total benefit, [math]X[/math] + [math]Y[/math], is 17,000. Due to increasing medical costs, the company that issues the policy decides to increase [math]X[/math] by a flat amount of 100 per claim and to increase [math]Y[/math] by 10% per claim.

Calculate the variance of the total benefit after these revisions have been made.

  • 18,200
  • 18,800
  • 19,300
  • 19,520
  • 20,670

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
May 06'23

Let [math]X[/math] be a random variable that takes on the values –1, 0, and 1 with equal probabilities. Let [math]Y = X^2 [/math] . Which of the following is true?

  • Cov(X, Y) > 0; the random variables X and Y are dependent
  • Cov(X, Y) > 0; the random variables X and Y are independent
  • Cov(X, Y) = 0; the random variables X and Y are dependent
  • Cov(X, Y) = 0; the random variables X and Y are independent
  • Cov(X, Y) < 0; the random variables X and Y are dependent

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jun 02'22

Let [math]X,Y[/math] be any two random variables with a joint density function. Suppose that

[[math]]\operatorname{E}[X|Y] = g(Y), \, g(y) = E[X|Y=y].[[/math]]

Which of the following statements is always true:

  • [math]|\operatorname{Cov}(X,Y)| \lt |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|[/math]
  • [math]|\operatorname{Cov}(X,Y)| \gt |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|[/math]
  • [math]\operatorname{Cov}(X,Y) = \operatorname{Cov}(\operatorname{E}[X | Y],Y)[/math]
  • If [math]\operatorname{Cov}(\operatorname{E}[X | Y],Y) = 0[/math] then [math]X [/math] and [math]Y[/math] are independent.
  • If [math]\operatorname{Cov}(X,Y) = \operatorname{Cov}(\operatorname{E}[X | Y],Y)[/math] for every [math]Y[/math] then [math]X = \operatorname{E}[X | Y][/math].
ABy Admin
Jun 02'22

You are given the following about the daily stock returns [math]r_1[/math] and [math]r_2[/math]:

  • The daily stock returns [math]r_1[/math] and [math]r_2[/math] have identical marginal distributions with an expected return equal to zero.
  • Given that both returns are less than -0.2, the returns are independent with a mean return of 0.05.
  • Given that one of the returns is greater than -0.2, the covariance equals 0.0225 and the means equal -0.25.

Determine the covariance of [math]r_1[/math] and [math]r_2[/math].

  • 0
  • 0.01317
  • 0.01417
  • 0.0755
  • 0.0795
ABy Admin
Jun 02'22

The variables [math]X[/math] and [math]Y[/math] have joint density function

[[math]] f(x,y) = \begin{cases} \frac{2(\alpha + 1)}{\alpha -1}, \quad 0 \leq x \leq 1, x^{\alpha} \lt y \leq x \\ 0, \quad \textrm{Otherwise} \end{cases} [[/math]]

with [math]\alpha \gt 1 [/math]. Determine the limit of the covariance of [math]X[/math] and [math]Y[/math] as [math]\alpha \rightarrow 1 [/math].

  • -0.0525
  • -1/12
  • 0
  • 0.0525
  • 0.1775