⧼exchistory⧽
21 exercise(s) shown, 0 hidden
BBy Bot
Jun 09'24
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X_1[/math], [math]X_2[/math], \dots, [math]X_n[/math] be a sequence of independent random
variables, all having a common density function [math]f_X[/math]. Let [math]A = S_n/n[/math] be their average. Find [math]f_A[/math] if
- [math]f_X(x) = (1/\sqrt{2\pi}) e^{-x^2/2}[/math] (normal density).
- [math]f_X(x) = e^{-x}[/math] (exponential density). Hint: Write [math]f_A(x)[/math] in terms of [math]f_{S_n}(x)[/math].