⧼exchistory⧽
ABy Admin
Nov 26'23

Jeff deposits 10 into a fund today and 20 fifteen years later. Interest is credited at a nominal discount rate of d compounded quarterly for the first 10 years, and at a nominal interest rate of 6% compounded semiannually thereafter. The accumulated balance in the fund at the end of 30 years is 100.

  • 4.33%
  • 4.43%
  • 4.53%
  • 4.63%
  • 4.73%

Calculate d.

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

On July 1, 1999, a person invested 1000 in a fund for which the force of interest at time [math]t[/math] is given by [math]\delta_t=\frac{3+2 t}{50}[/math], where [math]t[/math] is the number of years since January 1, 1999. Determine the accumulated value of the investment on January 1, 2000.

  • 1036
  • 1041
  • 1045
  • 1046
  • 1051

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

At a nominal interest rate of i convertible semi-annually, an investment of 1000 immediately and 1500 at the end of the first year will accumulate to 2600 at the end of the second year.

Calculate i.

  • 2.75%
  • 2.77%
  • 2.79%
  • 2.81%
  • 2.83%

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

You are given that [math]a(t)=K t^2+L t+M[/math], for [math]0 \leq t \leq 2[/math], and that [math]a(0)=100, a(1)=110[/math], and [math]a(2)=136[/math].

Determine the force of interest at time [math]t=1 / 2[/math].

  • .030
  • .049
  • .061
  • .095
  • .097

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

The present value of 200 paid at the end of [math]n[/math] years, plus the present value of 100 paid at the end of [math]2 n[/math] years is 200 .

Determine the annual effective rate of interest.

  • [[math]]\left(\frac{\sqrt{3}+1}{2}\right)^{1 / n}-1[[/math]]
  • [[math]]1-\left(\frac{\sqrt{3}-1}{2}\right)^{1 / n}[[/math]]
  • [[math]]\left(\frac{\sqrt{3}-1}{2}\right)^{1 / n}-1[[/math]]
  • [[math]]\left(\frac{\sqrt{3}+1}{2}\right)-1[[/math]]
  • [[math]]1-\left(\frac{\sqrt{3}-1}{2}\right)^{1/ 2 n}[[/math]]


References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

Jennifer deposits 1000 into an account. Interest is credited at a nominal annual rate of i convertible seminannually for the first 7 years and at rate 2i convertible quarterly for the all years thereafter. The accumulated amount after 5 years is X. The accumulated amount at the end of 10.5 years is 1980.

Calculate X.

  • 1200
  • 1225
  • 1250
  • 1275
  • 1300

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

A deposit of 100 is made into a fund at time [math]t=0[/math]. The fund pays interest at a nominal annual rate of discount [math]d[/math] compounded quarterly for the first two years. Beginning at time [math]t=2[/math], interest is credited at a force of interest [math]\delta_t=\frac{1}{t+1}[/math]. At time [math]t=5[/math], the accumulated value of the fund is 260. Calculate [math]d[/math].

  • 12.7%
  • 12.9%
  • 13.1%
  • 13.3%
  • 13.5%

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

Fund A accumulates at rate [math]12 \%[/math] convertible monthly. Fund [math]\mathrm{B}[/math] accumulates with force of interest [math]\delta_t=t / 6[/math], in years. At time zero, 1 is deposited into each fund. Let [math]T[/math] be the time when the two funds are equal.

Determine [math]T[/math], in years.

  • [math]12 \ln (1.01)[/math]
  • [math]12 \ln (1.12)-\ln (1.01)[/math]
  • [math] 12 \ln (1.12)[/math]
  • [math]144 \ln (1.01)[/math]
  • [math]144\ln(1.12)[/math]

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

Find the first derivative with respect to [math]i[/math] of [math]f(i)=\frac{\delta}{d}[/math].

  • 0
  • [math]\frac{i-\delta}{i^2}[/math]
  • [math]\frac{d^2}{i^2}\left(1-\frac{i}{\delta}\right)[/math]
  • [math]\frac{\delta-i}{i^2}[/math]
  • [math]\frac{d^2}{i^2}\left(\frac{i}{\delta}-1\right)[/math]

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

A fund earns interest at a rate equivalent to 5% per annum effective. A person makes continuous deposits to the Fund for 10 years The rate at which deposits are made is 1000+100t per annum at time t (in years). How much will the person have in the fund at the end of the ten year period. (Set up the proper integral but do not evaluate. The letters i, v, δ should not appear in your integral.)

  • [[math]]\int_0^{10}(1000+100 t)e^{10-t} d t [[/math]]
  • [[math]] \int_0^{10}(1000+100 t)\left(1.05^{t}\right) d t [[/math]]
  • [[math]]1.05^{10} \int_0^{10}\exp{(1000+100 t)\left(1.05^{-t}\right)} d t [[/math]]
  • [[math]]1.05^{10} \int_0^{10}(1000+100 t)\left(1.05^{t}\right) d t [[/math]]
  • [[math]]1.05^{10} \int_0^{10}(1000+100 t)\left(1.05^{-t}\right) d t [[/math]]

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.