Determine whether or not each of the following sequences converges, and evaluate the limit if it does.
- [a [math]a_n = \frac{n^2-1}{n^2+1}[/math]
- [math]b_k = \frac{k^2}{(k+1)^2}[/math]
- [math]s_n = \frac{n+1}{n^2}[/math]
- [math]s_n = (-1)^n \frac{n+1}{n^2}[/math]
- [math]a_i = \left( 1 + \frac1i \right)^i[/math]
- [math]s_i = i \sin \frac1i[/math].
Evaluate each of the following limits.
- [math]\lim_{n\goesto\infty} \frac{(n+1)(n+3)}{n^2+3}[/math]
- [math]\lim_{i\goesto\infty} e^{\frac1i}[/math]
- [math]\lim_{k\goesto\infty} \frac{k}{\sqrt{k+1}}[/math]
- [math]\lim_{n\goesto\infty} \cos n[/math]
- [math]\lim_{n\goesto\infty} \frac1n \cos n[/math]
- [math]\lim_{k\goesto\infty} \left(\sqrt{k} - \sqrt{k+1}\right)[/math].
Determine whether or not each of the following sequences [math]\{ s_n \}[/math] converges, and, if it does, evaluate the limit.
- [math]\cond{s_n = (-1)^n, & n=1,2,\ldots.}[/math]
- [math]s_n = \dilemma{1+\frac1n, & \mbox{for every integer [/math]n[math] such that [/math]1 \leq n \leq 10[math],}} {1, & \mbox{for every integer [/math]n > 10[math].}}[/math]
- [math]s_n = \dilemma{1+\frac1n, & \mbox{if [/math]n[math] is a positive even integer,}} {1, & \mbox{if [/math]n[math] is a positive odd integer.}}[/math]
- [math]s_n = \dilemma{1+\frac1n, & \mbox{for every integer [/math]n[math] such that [/math]1 \leq n \leq 10[math],}} {2, & \mbox{for every integer [/math]n > 10[math].}}[/math]
Let [math]s[/math] be the sequence defined by [math]s+n = \frac1n[/math], for every positive integer [math]n[/math]. Draw an [math]x[/math]-axis, and plot on it the first ten points of the sequence. What is [math]\lim_{n\goesto\infty} s_n[/math]?
Let [math]r[/math] be a real number, and consider the sequence [math]1, r, r^2, r^3, \ldots.[/math] Show that the sequence converges if and only if [math]-1 \lt r \leq 1[/math], and that
,}} {\infty & \mbox{if [math]r \gt 1[/math].}} </math> What is the behavior of the sequence for [math]r=-1[/math] and for [math]r \lt -1[/math]? (Hint: Let [math]r^n = e^{n \ln r}[/math], for [math]r \gt 0[/math].)
Finish the proof of Theorem \ref{thm 9.1.1}:
- Prove \ref{thm 9.1.1ii}.
- Prove \ref{thm 9.1.1iii}.
- Prove \ref{thm 9.1.1iv}.
Let [math]s[/math] and [math]t[/math] be two infinite sequences and [math]a[/math] a real number such that
for every integer [math]n[/math] greater than or equal to some integer [math]k[/math]. Prove that
[Suggestion: It is easy to prove this result directly from the definition of convergence. Alternatively, one may consider a constant sequence with the single value [math]a[/math], and obtain the result as a corollary of Theorem \ref{thm 9.1.1i}.]
Consider the sequence [math]\{ s_n \}[/math] defined by [math]s_n = n + (-1)^n[/math], for every integer [math]n \geq 0[/math].
- Write the first ten terms of the sequence.
- Show that [math]\lim_{n\goesto\infty} s_n = \infty[/math], but that [math]\{ s_n \}[/math] is not an increasing sequence.
- Give another example of a sequence [math]\{ s_n \}[/math] which is not monotonic but for which [math]\lim_{n\goesto\infty} s_n = \infty[/math].