The equation [math](x^2 + y^2)^2 = 2(x^2 - y^2)[/math] (see Figure) implicitly defines a differentiable function [math]f(x)[/math] whose graph passes through the point [math]\left( \frac{\sqrt3}{2}, \frac12\right)[/math]. Compute [math]f^\prime \left( \frac{\sqrt3}2 \right)[/math].
Compute the slope of the tangent line to the circle [math]x^2 + y^2 = 4[/math] at the point [math](1, \sqrt3)[/math] and at the point [math](1, -\sqrt3)[/math].
- lab{1.9.3a} The equation [math]x^3 + y^3 - 6xy = 0[/math] (see Figure) implicitly defines a differentiable function [math]f(x)[/math] whose graph passes through [math](3,3)[/math]. Compute [math]f^\prime (3)[/math].
- How many differentiable functions [math]f(x)[/math] having a small interval about the number [math]3[/math] as a common domain are implicitly defined by the equation in \ref{ex1.9.3a}?
- Compute [math]f^\prime (3)[/math] for each of them.
For each of the following equations calculate [math]\dydx[/math] at the point specified.
- [math]4x^2 + y^2 = 8[/math], at the point [math](1, 2)[/math].
- [math]y^2 = x[/math], at the point [math](4, 2)[/math].
- [math]y^2 = x^5[/math], at one point [math](1,1)[/math].
- [math]y^2 = \frac{x-1}{x+1}[/math], at the point [math](a,b)[/math].
- [math]y^2 = \frac{x^2-1}{x^2+1}[/math], at the point [math](a,b)[/math].
- [math]x^2y + xy^2 = 6[/math], at the point [math](1,2)[/math].
- [math]x^2 + 2xy = 3y^2[/math], at the point [math](1,1)[/math].
- [math]5y^2 = x^2y + \frac{2}{xy^2}[/math], at the point [math](2,1)[/math].
- [math]x^\frac32 + y^\frac32 = 2[/math], at the point [math](1,1)[/math].
- [math]x^5 + 3x^2y^3 + 3x^3y^2 + y^5 = 8[/math], at the point [math](1,1)[/math].
What is the slope of the line tangent to the graph of [math]y^3x^2 = 4[/math] at the point [math](2,1)[/math]? Calculate [math]y^{\prime\prime} (2)[/math].
Each of the following equations implicitly defines [math]y[/math] as a differentiable function of [math]x[/math] in the vicinity of the point [math](a,b)[/math]. Compute [math]\dydx (a)[/math] and [math]\deriv{2}{y} (a)[/math].
- [math]x^2 - y^2 = 1, (a,b) = (\sqrt2, 1)[/math].
- [math]y^2 = 1 -xy, (a,b) = (0,1)[/math].
- [math]xy^2 = 8, (a,b) = (2, -2)[/math].
- [math]x^2y^3 = 1, (a,b) = (-1,1)[/math].