⧼exchistory⧽
3 exercise(s) shown, 0 hidden
ABy Admin
May 25'23

A stationary autoregressive model of order one can be written as

[[math]] y_t = \beta_0 + \beta_1y_{t-1} + \epsilon_t, \, t = 1,2, \ldots [[/math]]

Determine which of the following statements about this model is false

  • The parameter [math]\beta_0[/math] must not equal 1.
  • The absolute value of the parameter [math]\beta_1[/math] must be less than 1.
  • If the parameter [math]\beta_1 = 0[/math], then the model reduces to a white noise process.
  • If the parameter [math]β_1 = 1,[/math] then the model is a random walk.
  • Only the immediate past value, [math]y_{t−1}[/math], is used as a predictor for [math]y_t[/math].

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
May 25'23

You are given the following six observed values of the autoregressive model of order one time series

[[math]] y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t [[/math]]

t 1 2 3 4 5 6
yt 31 35 37 41 45 51


with [math]\operatorname{Var}(\epsilon_t) = \sigma^2 [/math].

The approximation to the conditional least squares method is used to estimate [math]β_0[/math] and [math]β_1[/math] .

Calculate the mean squared error [math]s^2[/math] that estimates [math]σ^2.[/math]

  • 13
  • 21
  • 22
  • 26
  • 35

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
May 25'23

You are given a stationary AR(1) model,

[[math]] y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t, \, t = 2, \ldots, T [[/math]]

Determine which or the following is always true.

  • [math]\beta_0 \neq 0 [/math]
  • [math]\beta_0 = 1[/math]
  • [math]\beta_1 = 0[/math]
  • [math]\beta_1 = 1[/math]
  • [math]|\beta_1| \lt 1[/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.