⧼exchistory⧽
3 exercise(s) shown, 0 hidden
ABy Admin
May 25'23
A stationary autoregressive model of order one can be written as
[[math]]
y_t = \beta_0 + \beta_1y_{t-1} + \epsilon_t, \, t = 1,2, \ldots
[[/math]]
Determine which of the following statements about this model is false
- The parameter [math]\beta_0[/math] must not equal 1.
- The absolute value of the parameter [math]\beta_1[/math] must be less than 1.
- If the parameter [math]\beta_1 = 0[/math], then the model reduces to a white noise process.
- If the parameter [math]β_1 = 1,[/math] then the model is a random walk.
- Only the immediate past value, [math]y_{t−1}[/math], is used as a predictor for [math]y_t[/math].
ABy Admin
May 25'23
You are given the following six observed values of the autoregressive model of order one time series
[[math]]
y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t
[[/math]]
t | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
yt | 31 | 35 | 37 | 41 | 45 | 51 |
with [math]\operatorname{Var}(\epsilon_t) = \sigma^2 [/math].
The approximation to the conditional least squares method is used to estimate [math]β_0[/math] and [math]β_1[/math] .
Calculate the mean squared error [math]s^2[/math] that estimates [math]σ^2.[/math]
- 13
- 21
- 22
- 26
- 35
ABy Admin
May 25'23
You are given a stationary AR(1) model,
[[math]]
y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t, \, t = 2, \ldots, T
[[/math]]
Determine which or the following is always true.
- [math]\beta_0 \neq 0 [/math]
- [math]\beta_0 = 1[/math]
- [math]\beta_1 = 0[/math]
- [math]\beta_1 = 1[/math]
- [math]|\beta_1| \lt 1[/math]