⧼exchistory⧽
2 exercise(s) shown, 0 hidden
BBot
May 08'24
[math]
\newcommand{\R}{\mathbb{R}}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Rbar}{\overline{\mathbb{R}}}
\newcommand{\Bbar}{\overline{\mathcal{B}}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\one}{\mathds{1}}
\newcommand{\0}{\mathcal{O}}
\newcommand{\mat}{\textnormal{Mat}}
\newcommand{\sign}{\textnormal{sign}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CT}{\mathcal{T}}
\newcommand{\CY}{\mathcal{Y}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\mathds}{\mathbb}[/math]
The following exercises are important.
- Show that
[[math]] \F_T=\left\{\bigcup_{n\in\bar\N}A_n\cap \{T=n\}\big| A_\infty\in\F,A_n\in\F_n\right\}. [[/math]]
- Show that a r.v. [math]L[/math] with values in [math]\bar \N[/math] is a stopping time if and only if [math]\left(\one_{\{L\leq n\}}\right)_{n\geq 0}[/math] is [math](\F_n)[/math]-adapted and for the case it's a stopping time, we get
[[math]] L=\inf\{n\geq 0\mid \one_{\{ L\leq n\}}=1\}. [[/math]]
BBot
May 08'24
[math]
\newcommand{\R}{\mathbb{R}}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Rbar}{\overline{\mathbb{R}}}
\newcommand{\Bbar}{\overline{\mathcal{B}}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\one}{\mathds{1}}
\newcommand{\0}{\mathcal{O}}
\newcommand{\mat}{\textnormal{Mat}}
\newcommand{\sign}{\textnormal{sign}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CT}{\mathcal{T}}
\newcommand{\CY}{\mathcal{Y}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]T[/math] be a stopping time and [math]\Lambda\in\F_T[/math]. Define
[[math]]
T_\Lambda(\omega)=\begin{cases}T(\omega)&\text{if $\omega\in\Lambda$}\\ \infty&\text{if $\omega\not\in\Lambda$}\end{cases}
[[/math]]
Prove that [math]T_\Lambda[/math] is a stopping time.