⧼exchistory⧽
2 exercise(s) shown, 0 hidden
BBy Bot
May 08'24
[math] \newcommand{\R}{\mathbb{R}} \newcommand{\A}{\mathcal{A}} \newcommand{\B}{\mathcal{B}} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\Rbar}{\overline{\mathbb{R}}} \newcommand{\Bbar}{\overline{\mathcal{B}}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\p}{\mathbb{P}} \newcommand{\one}{\mathds{1}} \newcommand{\0}{\mathcal{O}} \newcommand{\mat}{\textnormal{Mat}} \newcommand{\sign}{\textnormal{sign}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\F}{\mathcal{F}} \newcommand{\mathds}{\mathbb}[/math]

The following exercises are important.

  • Show that
    [[math]] \F_T=\left\{\bigcup_{n\in\bar\N}A_n\cap \{T=n\}\big| A_\infty\in\F,A_n\in\F_n\right\}. [[/math]]
  • Show that a r.v. [math]L[/math] with values in [math]\bar \N[/math] is a stopping time if and only if [math]\left(\one_{\{L\leq n\}}\right)_{n\geq 0}[/math] is [math](\F_n)[/math]-adapted and for the case it's a stopping time, we get
    [[math]] L=\inf\{n\geq 0\mid \one_{\{ L\leq n\}}=1\}. [[/math]]
BBy Bot
May 08'24
[math] \newcommand{\R}{\mathbb{R}} \newcommand{\A}{\mathcal{A}} \newcommand{\B}{\mathcal{B}} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\Rbar}{\overline{\mathbb{R}}} \newcommand{\Bbar}{\overline{\mathcal{B}}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\p}{\mathbb{P}} \newcommand{\one}{\mathds{1}} \newcommand{\0}{\mathcal{O}} \newcommand{\mat}{\textnormal{Mat}} \newcommand{\sign}{\textnormal{sign}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\F}{\mathcal{F}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]T[/math] be a stopping time and [math]\Lambda\in\F_T[/math]. Define

[[math]] T_\Lambda(\omega)=\begin{cases}T(\omega)&\text{if $\omega\in\Lambda$}\\ \infty&\text{if $\omega\not\in\Lambda$}\end{cases} [[/math]]

Prove that [math]T_\Lambda[/math] is a stopping time.