⧼exchistory⧽
2 exercise(s) shown, 0 hidden
BBy Bot
May 08'24
[math] \newcommand{\R}{\mathbb{R}} \newcommand{\A}{\mathcal{A}} \newcommand{\B}{\mathcal{B}} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\Rbar}{\overline{\mathbb{R}}} \newcommand{\Bbar}{\overline{\mathcal{B}}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\p}{\mathbb{P}} \newcommand{\one}{\mathds{1}} \newcommand{\0}{\mathcal{O}} \newcommand{\mat}{\textnormal{Mat}} \newcommand{\sign}{\textnormal{sign}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\F}{\mathcal{F}} \newcommand{\mathds}{\mathbb}[/math]

Show that if [math]f,g\in\mathcal{L}^1(E,\mathcal{A},\mu)[/math] and [math]f\leq g[/math] a.e., then

[[math]] \int fd\mu\leq \int gd\mu. [[/math]]

BBy Bot
May 08'24
[math] \newcommand{\R}{\mathbb{R}} \newcommand{\A}{\mathcal{A}} \newcommand{\B}{\mathcal{B}} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\Rbar}{\overline{\mathbb{R}}} \newcommand{\Bbar}{\overline{\mathcal{B}}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\p}{\mathbb{P}} \newcommand{\one}{\mathds{1}} \newcommand{\0}{\mathcal{O}} \newcommand{\mat}{\textnormal{Mat}} \newcommand{\sign}{\textnormal{sign}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\F}{\mathcal{F}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]\mu[/math] be a measure on [math](\mathbb{R},\mathcal{B}(\mathbb{R}))[/math] such that for all [math]x\in\mathbb{R}[/math], [math]\mu(\{x\})=0[/math]. Moreover, let [math]\phi\in\mathcal{L}^1(\mathbb{R},\mathcal{B}(\mathbb{R}),\mu)[/math] such that

[[math]] \int_\mathbb{R}\vert x\phi(x)\vert d\mu \lt \infty. [[/math]]

Furthermore, for [math]u\in \mathbb{R}[/math], define

[[math]] F(u)=\int_{\mathbb{R}}(u-x)^+\phi(x)d\mu. [[/math]]

Show that [math]F[/math] is differentiable and that

[[math]] F'(u)=\int_{(-\infty,u]}\phi(x)d\mu. [[/math]]