⧼exchistory⧽
3 exercise(s) shown, 0 hidden
BBy Bot
May 31'24
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]\Bbar_1(0)[/math] denote the unit ball of [math]\mathbb{R}^d[/math].
- Use Lemma to compute [math]\lambda^d(\Bbar_1(0))[/math] for [math]d=1,\dots,10[/math].
- Compute [math]\lim_{d\rightarrow\infty}\lambda^d(\Bbar_1(0))[/math].
- Show that [math]\lambda^d(\Bbar_1(0))=\medfrac{\pi^{d/2}}{\Gamma(d/2+1)}[/math] holds, where [math]\Gamma\colon(0,\infty)\rightarrow\mathbb{R}[/math] denotes the Gamma function.
BBy Bot
May 31'24
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
\newcommand{\mathds}{\mathbb}
[/math]
Let [math]d\geqslant3[/math] and [math]n[/math] be such that [math]2\ln(n)\leqslant d[/math] holds. Show that
[[math]]
\P\bigl[\bigl|\bigl\langle{}\medfrac{x^{\scriptscriptstyle(j)}}{\|x^{\scriptscriptstyle(j)}\|},\medfrac{x^{\scriptscriptstyle(k)}}{\|x^{\scriptscriptstyle(k)}\|}\bigr\rangle{}\bigr|\leqslant\medfrac{\sqrt{6\ln n}}{\sqrt{d-1}} \text{ for all }j\not=k\bigr]\geqslant 1-\medfrac{1}{n}
[[/math]]
holds, when [math]x^{\scriptscriptstyle(1)},\dots,x^{\scriptscriptstyle(n)}[/math] are drawn uniformly at random from the [math]d[/math]--dimensional unit ball.
Hint: Use that [math]1\leqslant d^2/(d-2\ln n)^2[/math] holds and apply then the Theorem of Total Probability.