Sketch the graph of each of the following functions, carefully labeling all extreme points and all points of inflection. Classify each extreme point as to type.
- [math]x^2 - 5x + 6[/math]
- [math]3 - 2x - x^2[/math]
- [math]2x^2 - 3x - 1[/math]
- [math]5-2x^2[/math]
- [math]x^3 - 3x[/math]
- [math](x+1)(x^3 - x^2 - 5x + 13)[/math]
- [math]\frac{x+2}x[/math]
- [math]\frac{16}x + x^2[/math]
- [math]x^3 - x[/math]
- [math]x^4 - x[/math]
- [math](a^\frac23 - x^\frac23)^\frac32[/math]
- [math]|x|[/math]
- [math]|x-7|[/math]
- [math]3 + \frac6{x-2}[/math]
- [math]x^4 - 8x^2 + 3[/math]
- [math]\frac{x^2 - 5x + 4}{8x}[/math]
- [math](x-1)(x-2)(x-3)[/math]
- [math]1+6x - \frac12x^3[/math].
Show that a polynomial function of [math]x[/math] which consists only of even powers of [math]x[/math] is an even function.
Show that a polynomial function of [math]x[/math] which consists only of odd powers of [math]x[/math] is an odd function.
- Show that the graph of the function [math]ax^2 + bx + c, a \ne 0[/math], always has an absolute extreme point.
- Which of the constants [math]a[/math], [math]b[/math], and [math]c[/math] determines the type of extreme point of the graph?
- lab{2.1.4c} What is the extreme value of [math]ax^2 + bx + c[/math]?
- Write [math]ax^2 + bx + c[/math] as [math]a \left( x^2 + \frac ba x \right) + c[/math], complete the square on [math]x^2 + \frac ba x[/math] without changing the function, and find the result of \ref{ex2.1.4c} algebraically.
Show that the graph of [math]x^3 - 12x[/math] has a local maximum point but no absolute maximum point and that it also has a local maximum point which is strictly local.
Sketch the graph of [math]f(x)[/math], if [math]f(0)=3[/math] and [math]f^\prime (x) = -1[/math] for all real values of [math]x[/math].
Sketch the graph of [math]f(x)[/math], if [math]f(-1)=2[/math] and [math]f^\prime (x) = \frac12[/math] for all real values of [math]x[/math].
Sketch the graph of [math]f(x)[/math], if [math]f(0)=0[/math] and [math]f^\prime (x) = x[/math] for all real values of [math]x[/math].
Construct a function which has a local maximum point, with local maximum point defined as in this section, but would not have a local maximum if the definition were changed to demand [math]f(a) \gt f(x), x \ne a[/math], instead of [math]f(a) \geq f(x)[/math].
Graph the function [math]x^\frac13[/math] and show that it has a point of inflection where neither the first nor the second derivative exists.