In each of the following problems find [math][f(g)]^\prime (x)[/math].
- [math]f(y) = y^5[/math] and [math]g(x) = x^2 + 1[/math].
- [math]f(y) = y^2 + 2y[/math] and [math]g(x) = x^2 - 2x + 2[/math].
- [math]f(y) = y^3[/math] and [math]g(x) = \frac{x}{x^2+1}[/math].
- [math]f(u) = \frac{u}{u+1}[/math] and [math]g(x) = x^2[/math].
- [math]f(x) = x^{-2}[/math] and [math]g(x) = x^\frac13[/math].
- [math]f(x) = x^4[/math] and [math]g(t) = \frac{t^2-1}{t^2+1}[/math].
- [math]f(x) = g(x) = x^2 + 3x +2[/math].
Find [math]f^\prime[/math] given that
- [math]f(x) = (1 + x^2)^{10}[/math]
- [math]f(x) = (x^4 + 3x^3 + 2x^2 + x +4)^6[/math]
- [math]f(x) = (t^2 + 1)^4(2t^2 - 3)^3[/math]
- [math]f(x) = \sqrt{x^3 -1}[/math]
- [math]f(x) = \left( \frac{x-1}{x+1} \right)^3[/math]
- [math]f(s) = \frac1{\sqrt{s^2 + 1}}[/math]
- [math]f(y) = \frac{y^2}{(y^2 +1)^{\frac32}}[/math]
- [math]f(u) = \frac5{\left( u + \frac1{\sqrt u} \right)^4}[/math].
If [math]f(y) = y^{-2}[/math] and [math]g(x)= \frac{x^{\frac12}} {\sqrt{5x^3 + 6x^2 + 4x}}[/math], compute the derivative of the composite function [math]f(g)[/math] in two ways:
- By finding [math]f(g(x))[/math] first and then taking its derivative.
- By the Chain Rule.
If [math]z = 5y^7 + 2y^2 + 1[/math] and [math]y = 2x^2 - 6[/math], find [math]\ddxof z[/math] and [math]\ddxof z (2)[/math].
If [math]y = x^3[/math] and [math]x = \frac1{\sqrt{t^2+5}}[/math], compute [math]\nxder{}{y}{t}[/math] and [math]\nxder{}{y}{t} (2)[/math] using the Chain Rule.
Let [math]y = x^2 + 3x + 2[/math] and [math]x = \frac{t-1}{t+1}[/math]. Compute [math]\nxder{}{y}{t} (2)[/math] in two ways:
- By evaluating the composite function [math]y(t)[/math] and then by taking its derivative.
- By the Chain Rule.
Prove directly by induction on [math]n[/math] without using the Chain Rule that if [math]f[/math] is a differentiable function and [math]n[/math] is a positive integer, then [math](f^n)^\prime = nf^{n-1}f^\prime[/math].
Prove as a corollary of the Chain Rule that
Using Problem Exercise, show that if [math]w = f(z)[/math] and [math]z = g(y)[/math] and [math]y = h(x)[/math], then
Let [math]w = z - \frac1z[/math], [math]z= \sqrt{y^3+1}[/math], and [math]y = 2x^3 - x + 1[/math]. Find [math]\ddxof w (1)[/math].