Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
rev | Admin | (Created page with "'''Solution: C''' We need <math>t</math> such that <math>(1+i)^t=2</math> so <math>t=\ln 2 /(\ln (1+i))</math>. But <math>4 s_{\overline{2 n} \mid}=9 s_{\bar{n} \mid}</math> so <math>4 \frac{(1+i)^{2 n}-1}{i}=</math> <math>9 \frac{(1+i)^n-1}{i}</math> so <math>4 \frac{\left((1+i)^n-1\right)\left((1+i)^n+1\right)}{i}=9 \frac{(1+i)^n-1}{i}</math> so <math>(1+i)^n+1=9 / 4</math> so <math>(1+i)^n=5 / 4=1.25</math>. Thus <math>n \ln (1+i)=\ln 1.25</math>. Finally <math>t=\ln...") | Nov 26'23 at 20:46 | +768 |