Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
rev | Admin | (Created page with "'''Solution: D''' Let <math>j=</math> semi annual interest. <math>2600=1000(1+j)^4+1500(1+j)^2</math> This is a quadratic in <math>x=(1+j)^2</math>, which simplifies to <math>10 x^2+15 x-26=0</math> so <math display = "block">x=\frac{-15 \pm \sqrt{15^2-4(10)(-26)}}{2(10)}=1.028342</math> Thus <math>(1+j)^2=1.028342</math> so <math>j=1.028342^5-1=0.01407199=\frac{i^{(2)}}{2}</math>. Finally <math>i^{(2)}=2(.01407199)=.02814=2.81 \%</math>. '''References''' {{cite web...") | Nov 26'23 at 17:42 | +687 |