Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
rev | Admin | (Created page with "'''Solution: B''' <math display="block"> 260=\frac{100}{(1-d / 4)^8} e^{\int_2^5 1 /(t+1) d t}=\frac{100}{(1-d / 4)^8} e^{\left.\ln (t+1)\right|_2 ^5}=\frac{100}{(1-d / 4)^8} e^{\ln (6)-\ln (3)}=\frac{100}{(1-d / 4)^8} e^{\ln (6 / 3)}=\frac{100}{(1-d / 4)^8} 2 \text {. } </math> So <math>1-d / 4=(200 / 260)^{.125}</math> so <math>d=4 *\left(1-(200 / 260)^{.125}\right)=0.129</math>. '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.h...") | Nov 26'23 at 17:49 | +632 |