exercise:Ac24f1d3f1: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> <ul><li> For events <math>A_1</math>, \dots, <math>A_n</math>, prove that <math display="block"> P(A_1 \cup \cdots \cup A_n) \leq P(A_1) + \cdots + P(A_n)\ . </math> </li> <li> For events <math>A</math> and <math>B</math>, prove that <math disp...")
 
No edit summary
 
Line 6: Line 6:
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div>
\newcommand{\mathds}{\mathbb}</math></div>
<ul><li> For events <math>A_1</math>, \dots, <math>A_n</math>, prove that  
<ul style="list-style-type:lower-alpha">
<li> For events <math>A_1, \dots, A_n</math>, prove that  


<math display="block">
<math display="block">
Line 12: Line 13:
</math>
</math>
</li>
</li>
<li> For events <math>A</math> and <math>B</math>, prove that
<li>  
 
For events <math>A</math> and <math>B</math>, prove that
<math display="block">
<math display="block">
P(A \cap B) \geq P(A) + P(B) - 1.
P(A \cap B) \geq P(A) + P(B) - 1.

Latest revision as of 23:21, 13 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]
  • For events [math]A_1, \dots, A_n[/math], prove that
    [[math]] P(A_1 \cup \cdots \cup A_n) \leq P(A_1) + \cdots + P(A_n)\ . [[/math]]
  • For events [math]A[/math] and [math]B[/math], prove that
    [[math]] P(A \cap B) \geq P(A) + P(B) - 1. [[/math]]