exercise:8765f28a00: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Suppose you choose two numbers <math>x</math> and <math>y</math>, independently at random from the interval <math>[0,1]</math>. Given that their sum lies in the interval <math>[0,1]</math>, find the probability that <ul><li> <math>|x - y| < 1</...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Suppose you choose two numbers <math>x</math> and <math>y</math>, independently at random from the interval <math>[0,1]</math>.  Given that their sum lies in the interval <math>[0,1]</math>,
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Suppose you choose two numbers <math>x</math> and <math>y</math>, independently at random from
the interval <math>[0,1]</math>.  Given that their sum lies in the interval <math>[0,1]</math>,
find the probability that
find the probability that
<ul><li> <math>|x - y|  <  1</math>.
 
<ul style="list-style-type:lower-alpha"><li> <math>|x - y|  <  1</math>.
</li>
</li>
<li> <math>xy  <  1/2</math>.
<li> <math>xy  <  1/2</math>.

Latest revision as of 23:34, 13 June 2024

Suppose you choose two numbers [math]x[/math] and [math]y[/math], independently at random from the interval [math][0,1][/math]. Given that their sum lies in the interval [math][0,1][/math], find the probability that

  • [math]|x - y| \lt 1[/math].
  • [math]xy \lt 1/2[/math].
  • [math]\max\{x,y\} \lt 1/2[/math].
  • [math]x^2 + y^2 \lt 1/4[/math].
  • [math]x \gt y[/math].