exercise:40102c4acd: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Find the conditional density functions for the following experiments. <ul><li> A number <math>x</math> is chosen at random in the interval <math>[0,1]</math>, given that <math>x > 1/4</math>. </li> <li> A number <math>t</math> is chosen at rando...") |
No edit summary |
||
Line 1: | Line 1: | ||
Find the conditional density functions for the following experiments. | |||
<ul style="list-style-type:lower-alpha"><li> A number <math>x</math> is chosen at random in the interval <math>[0,1]</math>, given that | |||
<ul><li> A number <math>x</math> is chosen at random in the interval <math>[0,1]</math>, given that | |||
<math>x > 1/4</math>. | <math>x > 1/4</math>. | ||
</li> | </li> |
Latest revision as of 23:35, 13 June 2024
Find the conditional density functions for the following experiments.
- A number [math]x[/math] is chosen at random in the interval [math][0,1][/math], given that [math]x \gt 1/4[/math].
- A number [math]t[/math] is chosen at random in the interval [math][0,\infty)[/math] with exponential density [math]e^{-t}[/math], given that [math]1 \lt t \lt 10[/math].
- A dart is thrown at a circular target of radius 10 inches, given that it falls in the upper half of the target.
- Two numbers [math]x[/math] and [math]y[/math] are chosen at random in the interval [math][0,1][/math], given that [math]x \gt y[/math].