exercise:Fecf01cb24: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1,\ X_2,\ \ldots,\ X_n</math> be <math>n</math> mutually independent random variables, each of which is uniformly distributed on the integers from 1 to <math>k</math>. Let <math>Y</math> denote the minimum of the <math>X_i</math>'s....")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X_1,\ X_2,\ \ldots,\ X_n</math> be <math>n</math> mutually independent random variables, each of which is uniformly distributed on the integers from 1 to <math>k</math>.  Let <math>Y</math> denote the minimum of the <math>X_i</math>'s.  Find the distribution of <math>Y</math>.
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1,\ X_2,\ \ldots,\ X_n</math> be <math>n</math> mutually independent
random variables, each of which is uniformly distributed on the integers from 1 to
<math>k</math>.  Let <math>Y</math> denote the minimum of the <math>X_i</math>'s.  Find the distribution of <math>Y</math>.

Latest revision as of 00:01, 14 June 2024

Let [math]X_1,\ X_2,\ \ldots,\ X_n[/math] be [math]n[/math] mutually independent random variables, each of which is uniformly distributed on the integers from 1 to [math]k[/math]. Let [math]Y[/math] denote the minimum of the [math]X_i[/math]'s. Find the distribution of [math]Y[/math].