exercise:D9107332f5: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> The following related discrete problem also gives a good clue for the answer to Exercise Exercise. Randomly select with replacement <math>t_1</math>, <math>t_2</math>, \dots, <math>t_r</math> from the set <math>(1/n, 2/n,...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
The following related discrete problem also gives a good clue for the answer to Exercise [[exercise:2d6dc4d7a2 |Exercise]].  Randomly select with replacement <math>t_1</math>, <math>t_2</math>,..., <math>t_r</math> from the set <math>(1/n, 2/n, \dots, n/n)</math>.  Let <math>X</math> be the smallest value of
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> The following related discrete problem also gives a good
clue for the answer to Exercise [[exercise:2d6dc4d7a2 |Exercise]].  Randomly select with replacement
<math>t_1</math>, <math>t_2</math>,
\dots, <math>t_r</math> from the set <math>(1/n, 2/n, \dots, n/n)</math>.  Let <math>X</math> be the smallest value of
<math>r</math> satisfying
<math>r</math> satisfying


Line 15: Line 6:
</math>
</math>
Then <math>E(X) = (1 + 1/n)^n</math>.  To prove this, we can just as well choose
Then <math>E(X) = (1 + 1/n)^n</math>.  To prove this, we can just as well choose
<math>t_1</math>, <math>t_2</math>, \dots, <math>t_r</math> randomly with replacement from the set <math>(1, 2,
<math>t_1</math>, <math>t_2</math>, ..., <math>t_r</math> randomly with replacement from the set <math>(1, 2,
\dots, n)</math> and let <math>X</math> be the smallest value of <math>r</math> for which
\dots, n)</math> and let <math>X</math> be the smallest value of <math>r</math> for which


Line 21: Line 12:
t_1 + t_2 +\cdots+ t_r  >  n\ .
t_1 + t_2 +\cdots+ t_r  >  n\ .
</math>
</math>
<ul><li> Use Exercise \ref{sec [[guide:E54e650503#exer 3.2.35.5 |3.2}.]] to show that
<ul style="list-style-type:lower-alpha"><li> Use [[exercise:173c44e9bd|Exercise]] to show that


<math display="block">
<math display="block">

Latest revision as of 17:17, 14 June 2024

The following related discrete problem also gives a good clue for the answer to Exercise Exercise. Randomly select with replacement [math]t_1[/math], [math]t_2[/math],..., [math]t_r[/math] from the set [math](1/n, 2/n, \dots, n/n)[/math]. Let [math]X[/math] be the smallest value of [math]r[/math] satisfying

[[math]] t_1 + t_2 +\cdots+ t_r \gt 1\ . [[/math]]

Then [math]E(X) = (1 + 1/n)^n[/math]. To prove this, we can just as well choose [math]t_1[/math], [math]t_2[/math], ..., [math]t_r[/math] randomly with replacement from the set [math](1, 2, \dots, n)[/math] and let [math]X[/math] be the smallest value of [math]r[/math] for which

[[math]] t_1 + t_2 +\cdots+ t_r \gt n\ . [[/math]]

  • Use Exercise to show that
    [[math]] P(X \geq j + 1) = {n \choose j}{\Bigl(\frac {1}{n}\Bigr)^j}\ . [[/math]]
  • Show that
    [[math]] E(X) = \sum_{j = 0}^n P(X \geq j + 1)\ . [[/math]]
  • From these two facts, find an expression for [math]E(X)[/math]. This proof is due to Harris Schultz.[Notes 1]

Notes

  1. H. Schultz, “An Expected Value Problem,” Two-Year Mathematics Journal, vol. 10, no. 4 (1979), pp. 277--78.