exercise:7b614bf427: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with <math>\mu = E(X)</math> and <math>\sigma^2 = V(X)</math>. Define <math>X^* = (X - \mu)/\sigma</math>. The random variable <math>X^*</math> is called the ''standardized random variable'' associated wi...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable with <math>\mu = E(X)</math> and <math>\sigma^2 = V(X)</math>.  Define <math>X^* = (X - \mu)/\sigma</math>.  The random variable <math>X^*</math> is called the  ''standardized random variable'' associated with
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with <math>\mu = E(X)</math> and
<math>\sigma^2 = V(X)</math>.  Define <math>X^* = (X - \mu)/\sigma</math>.  The random variable <math>X^*</math> is
called the  ''standardized random variable'' associated with
<math>X</math>.  Show that this standardized random variable has expected value 0 and variance 1.
<math>X</math>.  Show that this standardized random variable has expected value 0 and variance 1.

Latest revision as of 21:03, 14 June 2024

Let [math]X[/math] be a random variable with [math]\mu = E(X)[/math] and [math]\sigma^2 = V(X)[/math]. Define [math]X^* = (X - \mu)/\sigma[/math]. The random variable [math]X^*[/math] is called the standardized random variable associated with [math]X[/math]. Show that this standardized random variable has expected value 0 and variance 1.