exercise:442c66dc7c: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with values exponentially distributed over <math>[0,\infty)</math> with parameter <math>\lambda = 0.1</math>. <ul><li> Find the mean and variance of <math>X</math>. </li> <li> Using Chebyshev's In...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a continuous random variable with values exponentially distributed over <math>[0,\infty)</math> with parameter <math>\lambda = 0.1</math>.
\newcommand{\NA}{{\rm NA}}
<ul style="list-style-type:lower-alpha"><li> Find the mean and variance of <math>X</math>.
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with values exponentially
distributed over <math>[0,\infty)</math> with parameter <math>\lambda = 0.1</math>.
<ul><li> Find the mean and variance of <math>X</math>.
</li>
</li>
<li> Using Chebyshev's Inequality, find an upper bound for the following
<li> Using Chebyshev's Inequality, find an upper bound for the following

Latest revision as of 22:47, 14 June 2024

Let [math]X[/math] be a continuous random variable with values exponentially distributed over [math][0,\infty)[/math] with parameter [math]\lambda = 0.1[/math].

  • Find the mean and variance of [math]X[/math].
  • Using Chebyshev's Inequality, find an upper bound for the following probabilities: [math]P(|X - 10| \geq 2)[/math], [math]P(|X - 10| \geq 5)[/math], [math]P(|X - 10| \geq 9)[/math], and [math]P(|X - 10| \geq 20)[/math].
  • Calculate these probabilities exactly, and compare with the bounds in (b).