exercise:40407c4554: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> If <math>X</math> is normally distributed, with mean <math>\mu</math> and variance <math>\sigma^2</math>, find an upper bound for the following probabilities, using Chebyshev's Inequality. <ul><li> <math>P(|X - \mu| \geq \sigma)</math>. </li> <li>...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
If <math>X</math> is normally distributed, with mean <math>\mu</math> and
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> If <math>X</math> is normally distributed, with mean <math>\mu</math> and
variance <math>\sigma^2</math>, find an upper bound for the following probabilities, using Chebyshev's
variance <math>\sigma^2</math>, find an upper bound for the following probabilities, using Chebyshev's
Inequality.
Inequality.
<ul><li> <math>P(|X - \mu| \geq \sigma)</math>.
<ul style="list-style-type:lower-alpha"><li> <math>P(|X - \mu| \geq \sigma)</math>.
</li>
</li>
<li> <math>P(|X - \mu| \geq 2\sigma)</math>.
<li> <math>P(|X - \mu| \geq 2\sigma)</math>.

Latest revision as of 22:48, 14 June 2024

If [math]X[/math] is normally distributed, with mean [math]\mu[/math] and variance [math]\sigma^2[/math], find an upper bound for the following probabilities, using Chebyshev's Inequality.

  • [math]P(|X - \mu| \geq \sigma)[/math].
  • [math]P(|X - \mu| \geq 2\sigma)[/math].
  • [math]P(|X - \mu| \geq 3\sigma)[/math].
  • [math]P(|X - \mu| \geq 4\sigma)[/math].

Now find the exact value using the program NormalArea or the normal table in Appendix A, and compare.