exercise:Ea798f271e: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable normally distributed on <math>(-\infty,+\infty)</math> with mean 0 and variance 1. Using the normal table provided in Appendix A, or the program ''' NormalArea''', find values for the function <m...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a continuous random variable normally distributed on <math>(-\infty,+\infty)</math> with mean 0 and variance 1.  Using the normal
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable normally
distributed on <math>(-\infty,+\infty)</math> with mean 0 and variance 1.  Using the normal
table provided in Appendix A, or the program ''' NormalArea''',
table provided in Appendix A, or the program ''' NormalArea''',
find values for the function <math>f(x) = P(|X| \geq x)</math> as <math>x</math> increases from
find values for the function <math>f(x) = P(|X| \geq x)</math> as <math>x</math> increases from

Latest revision as of 23:50, 14 June 2024

Let [math]X[/math] be a continuous random variable normally distributed on [math](-\infty,+\infty)[/math] with mean 0 and variance 1. Using the normal table provided in Appendix A, or the program NormalArea, find values for the function [math]f(x) = P(|X| \geq x)[/math] as [math]x[/math] increases from 0 to 4.0 in steps of .25. Note that for [math]x \geq 0[/math] the table gives [math] NA(0,x) = P(0 \leq X \leq x)[/math] and thus [math]P(|X| \geq x) = 2(.5 - NA(0,x)[/math]. Plot by hand the graph of [math]f(x)[/math] using these values, and the graph of the Chebyshev function [math]g(x) = 1/x^2[/math], and compare (see Exercise Exercise).