exercise:5a5fe2185b: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that if <math display="block"> h(z) = \frac{1 - \sqrt{1 - 4pqz^2}}{2qz}\ , </math> then <math display="block"> h(1) = \left \{ \begin{array}{ll} p/q, & \mbox{if $p \leq q,$} \\ 1, & \mbox{if <math>p \geq q,<...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Show that if
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Show that if


<math display="block">
<math display="block">
Line 15: Line 9:
h(1) = \left \{ \begin{array}{ll}
h(1) = \left \{ \begin{array}{ll}
               p/q, &  \mbox{if $p \leq q,$}  \\
               p/q, &  \mbox{if $p \leq q,$}  \\
                 1, &  \mbox{if <math>p \geq q,</math>} \end{array}\right.
                 1, &  \mbox{if $p \geq q,$} \end{array}\right.
</math>
</math>
and
and
Line 22: Line 16:
h'(1) = \left \{ \begin{array}{ll}
h'(1) = \left \{ \begin{array}{ll}
               1/(p - q), &  \mbox{if $p  >  q,$}\\
               1/(p - q), &  \mbox{if $p  >  q,$}\\
                   \infty, &  \mbox{if <math>p = q.</math>} \end{array}\right.
                   \infty, &  \mbox{if $p = q.$} \end{array}\right.
</math>
</math>

Latest revision as of 23:46, 14 June 2024

Show that if

[[math]] h(z) = \frac{1 - \sqrt{1 - 4pqz^2}}{2qz}\ , [[/math]]

then

[[math]] h(1) = \left \{ \begin{array}{ll} p/q, & \mbox{if $p \leq q,$} \\ 1, & \mbox{if $p \geq q,$} \end{array}\right. [[/math]]

and

[[math]] h'(1) = \left \{ \begin{array}{ll} 1/(p - q), & \mbox{if $p \gt q,$}\\ \infty, & \mbox{if $p = q.$} \end{array}\right. [[/math]]