exercise:Dc42ff4e62: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable whose characteristic function <math>k_X(\tau)</math> is <math display="block"> k_X(\tau) = e^{-|\tau|}, \qquad -\infty < \tau < +\infty\ . </math> Show directly that the density <math>f_X</ma...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a continuous random variable whose characteristic function
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable whose characteristic function
<math>k_X(\tau)</math> is
<math>k_X(\tau)</math> is



Latest revision as of 00:05, 15 June 2024

Let [math]X[/math] be a continuous random variable whose characteristic function [math]k_X(\tau)[/math] is

[[math]] k_X(\tau) = e^{-|\tau|}, \qquad -\infty \lt \tau \lt +\infty\ . [[/math]]

Show directly that the density [math]f_X[/math] of [math]X[/math] is

[[math]] f_X(x) = \frac1{\pi(1 + x^2)}\ . [[/math]]