exercise:8cecac6fc8: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be the transition matrix of an ergodic Markov chain and <math>\mat{P}^*</math> the reverse transition matrix. Show that they have the same fixed probability vector <math>\mat{w}</math>.")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>\mat{P}</math> be the transition matrix of an ergodic Markov chain and <math>\mat{P}^*</math> the reverse transition matrix.  Show that they have the same fixed probability vector <math>\mat{w}</math>.
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be the transition matrix of an ergodic
Markov  
chain and <math>\mat{P}^*</math> the reverse transition matrix.  Show that they have the
same  
fixed probability vector <math>\mat{w}</math>.

Latest revision as of 01:26, 15 June 2024

Let [math]\mat{P}[/math] be the transition matrix of an ergodic Markov chain and [math]\mat{P}^*[/math] the reverse transition matrix. Show that they have the same fixed probability vector [math]\mat{w}[/math].