exercise:A8c44d9562: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be a regular transition matrix and let <math>\mat{w}</math> be the unique non-zero fixed vector of <math>\mat{P}</math>. Show that no entry of <math>\mat{w}</math> is 0.") |
No edit summary |
||
Line 5: | Line 5: | ||
\newcommand{\secstoprocess}{\all} | \newcommand{\secstoprocess}{\all} | ||
\newcommand{\NA}{{\rm NA}} | \newcommand{\NA}{{\rm NA}} | ||
\newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be a regular transition matrix and let | \newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be a regular transition matrix and let <math>\mat{w}</math> be the unique non-zero fixed vector of <math>\mat{P}</math>. Show that no entry of <math>\mat{w}</math> is 0. | ||
<math>\mat{w}</math> | |||
be the unique non-zero fixed vector of <math>\mat{P}</math>. Show that no entry of | |||
<math>\mat{w}</math> | |||
is 0. |
Latest revision as of 21:16, 15 June 2024
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]\mat{P}[/math] be a regular transition matrix and let [math]\mat{w}[/math] be the unique non-zero fixed vector of [math]\mat{P}[/math]. Show that no entry of [math]\mat{w}[/math] is 0.