exercise:D1d4354eec: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In the Land of Oz example (Example), change the transition matrix by making R an absorbing state. This gives <math display="block"> \mat{P} = \bordermatrix{ & \mbox{R} & \mbox{N} & \mbox{S} \cr \mbox{R} & 1 &...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> In the Land of Oz example [[guide:52e01d4de7#exam 11.1.1 |(Example]]),  
\newcommand{\mathds}{\mathbb}</math></div> In the Land of Oz example [[guide:52e01d4de7#exam 11.1.1 |(Example]]), change the transition matrix by making R an absorbing state.  This gives
change the transition matrix by making R an absorbing state.  This gives


<math display="block">
<math display="block">
Line 16: Line 15:
\mbox{S} & 1/4 & 1/4 & 1/2}\ .
\mbox{S} & 1/4 & 1/4 & 1/2}\ .
</math>
</math>
Find the fundamental matrix <math>\mat{N}</math>, and also  <math>\mat{Nc}</math> and <math>\mat{NR}</math>.  
 
Interpret
Find the fundamental matrix <math>\mat{N}</math>, and also  <math>\mat{Nc}</math> and <math>\mat{NR}</math>. Interpret the results.
the results.

Latest revision as of 21:58, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

In the Land of Oz example (Example), change the transition matrix by making R an absorbing state. This gives

[[math]] \mat{P} = \bordermatrix{ & \mbox{R} & \mbox{N} & \mbox{S} \cr \mbox{R} & 1 & 0 & 0 \cr \mbox{N} & 1/2 & 0 & 1/2 \cr \mbox{S} & 1/4 & 1/4 & 1/2}\ . [[/math]]

Find the fundamental matrix [math]\mat{N}[/math], and also [math]\mat{Nc}[/math] and [math]\mat{NR}[/math]. Interpret the results.