exercise:D1d4354eec: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In the Land of Oz example (Example), change the transition matrix by making R an absorbing state. This gives <math display="block"> \mat{P} = \bordermatrix{ & \mbox{R} & \mbox{N} & \mbox{S} \cr \mbox{R} & 1 &...") |
No edit summary |
||
Line 5: | Line 5: | ||
\newcommand{\secstoprocess}{\all} | \newcommand{\secstoprocess}{\all} | ||
\newcommand{\NA}{{\rm NA}} | \newcommand{\NA}{{\rm NA}} | ||
\newcommand{\mathds}{\mathbb}</math></div> In the Land of Oz example [[guide:52e01d4de7#exam 11.1.1 |(Example]]), | \newcommand{\mathds}{\mathbb}</math></div> In the Land of Oz example [[guide:52e01d4de7#exam 11.1.1 |(Example]]), change the transition matrix by making R an absorbing state. This gives | ||
change the transition matrix by making R an absorbing state. This gives | |||
<math display="block"> | <math display="block"> | ||
Line 16: | Line 15: | ||
\mbox{S} & 1/4 & 1/4 & 1/2}\ . | \mbox{S} & 1/4 & 1/4 & 1/2}\ . | ||
</math> | </math> | ||
Find the fundamental matrix <math>\mat{N}</math>, and also <math>\mat{Nc}</math> and <math>\mat{NR}</math>. | |||
Interpret | Find the fundamental matrix <math>\mat{N}</math>, and also <math>\mat{Nc}</math> and <math>\mat{NR}</math>. Interpret the results. | ||
the results. |
Latest revision as of 21:58, 15 June 2024
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
In the Land of Oz example (Example), change the transition matrix by making R an absorbing state. This gives
[[math]]
\mat{P} =
\bordermatrix{
& \mbox{R} & \mbox{N} & \mbox{S} \cr
\mbox{R} & 1 & 0 & 0 \cr
\mbox{N} & 1/2 & 0 & 1/2 \cr
\mbox{S} & 1/4 & 1/4 & 1/2}\ .
[[/math]]
Find the fundamental matrix [math]\mat{N}[/math], and also [math]\mat{Nc}[/math] and [math]\mat{NR}[/math]. Interpret the results.