exercise:74602c39b8: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> (Roberts<ref group="Notes" >F. Roberts, ''Discrete Mathematical Models'' (Englewood Cliffs, NJ: Prentice Hall, 1976).</ref>) A city is divided into 3 areas 1, 2, and 3. It is estimated that amounts <math>u_1</math>, <math>u_2</math>, and <math>u...")
 
No edit summary
 
Line 6: Line 6:
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> (Roberts<ref group="Notes" >F. Roberts, ''Discrete
\newcommand{\mathds}{\mathbb}</math></div> (Roberts<ref group="Notes" >F. Roberts, ''Discrete
Mathematical  
Mathematical Models'' (Englewood Cliffs, NJ: Prentice Hall, 1976).</ref>) A city is divided into 3 areas 1, 2, and 3.  It is estimated that amounts <math>u_1</math>, <math>u_2</math>,and <math>u_3</math> of pollution are emitted each day from these three areas.  A fraction <math>q_{ij}</math> of the pollution from region <math>i</math> ends up the next day at region <math>j</math>.  A fraction <math>q_i = 1 - \sum_j q_{ij}  >  0</math> goes into the atmosphere and escapes.  Let <math>w_i^{(n)}</math> be the amount of pollution in area <math>i</math> after <math>n</math> days.
Models'' (Englewood Cliffs, NJ: Prentice Hall, 1976).</ref>) A
<ul style="list-style-type:lower-alpha"><li> Show that <math>\mat{w}^{(n)} = \mat{u} + \mat{u} \mat{Q} +\cdots +
city is
divided into 3 areas 1, 2, and 3.  It is estimated that amounts <math>u_1</math>, <math>u_2</math>,
and <math>u_3</math> of
pollution are emitted each day from these three areas.  A fraction <math>q_{ij}</math> of
the pollution from region <math>i</math> ends up the next day at region <math>j</math>.  A fraction
<math>q_i = 1 - \sum_j q_{ij}  >  0</math> goes into the atmosphere and escapes.  Let
<math>w_i^{(n)}</math> be the amount of pollution in area <math>i</math> after <math>n</math> days.
<ul><li> Show that <math>\mat{w}^{(n)} = \mat{u} + \mat{u} \mat{Q} +\cdots +
\mat{u}\mat{Q}^{n - 1}</math>.
\mat{u}\mat{Q}^{n - 1}</math>.
</li>
</li>
<li> Show that <math>\mat{w}^{(n)} \to \mat{w}</math>, and show how to compute  
<li> Show that <math>\mat{w}^{(n)} \to \mat{w}</math>, and show how to compute  
\mat{w} from \mat{u}.
<math>\mat{w}</math> from <math>\mat{u}</math>.


</li>
</li>

Latest revision as of 22:55, 15 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

(Roberts[Notes 1]) A city is divided into 3 areas 1, 2, and 3. It is estimated that amounts [math]u_1[/math], [math]u_2[/math],and [math]u_3[/math] of pollution are emitted each day from these three areas. A fraction [math]q_{ij}[/math] of the pollution from region [math]i[/math] ends up the next day at region [math]j[/math]. A fraction [math]q_i = 1 - \sum_j q_{ij} \gt 0[/math] goes into the atmosphere and escapes. Let [math]w_i^{(n)}[/math] be the amount of pollution in area [math]i[/math] after [math]n[/math] days.

  • Show that [math]\mat{w}^{(n)} = \mat{u} + \mat{u} \mat{Q} +\cdots + \mat{u}\mat{Q}^{n - 1}[/math].
  • Show that [math]\mat{w}^{(n)} \to \mat{w}[/math], and show how to compute [math]\mat{w}[/math] from [math]\mat{u}[/math].
  • The government wants to limit pollution levels to a prescribed level by prescribing [math]\mat{w}.[/math] Show how to determine the levels of pollution [math]\mat{u}[/math] which would result in a prescribed limiting value [math]\mat{w}[/math].

Notes

  1. F. Roberts, Discrete Mathematical Models (Englewood Cliffs, NJ: Prentice Hall, 1976).