exercise:C39474ce8e: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Consider a random walker who moves on the integers 0, 1, \ldots, <math>N</math>, moving one step to the right with probability <math>p</math> and one step to the left with probability <math>q = 1 - p</math>. If the walker ever reaches 0 or <math...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Consider a random walker who moves on the integers 0, 1,  
\newcommand{\mathds}{\mathbb}</math></div> Consider a random walker who moves on the integers 0, 1, ..., <math>N</math>, moving one step to the right with probability <math>p</math> and one step to the left with probability <math>q = 1 - p</math>.  If the walker ever reaches 0 or <math>N</math> he stays there.  (This is the Gambler's Ruin problem of [[exercise:8ae7bbfa06 |Exercise]].)   
\ldots, <math>N</math>, moving one step to the right with probability <math>p</math> and one step to
the
left with probability <math>q = 1 - p</math>.  If the walker ever reaches 0 or <math>N</math> he
stays
there.  (This is the Gambler's Ruin problem of Exercise [[exercise:8ae7bbfa06 |Exercise]].)   
If <math>p = q</math> show that the function
If <math>p = q</math> show that the function


Line 16: Line 11:
f(i) = i
f(i) = i
</math>
</math>
is a harmonic function (see Exercise [[exercise:Bc093aec03 |Exercise]]), and if <math>p \ne q</math> then
 
is a harmonic function (see [[exercise:Bc093aec03 |Exercise]]), and if <math>p \ne q</math> then


<math display="block">
<math display="block">
f(i) = \biggl(\frac  {q}{p}\biggr)^i
f(i) = \biggl(\frac  {q}{p}\biggr)^i
</math>
</math>
is a harmonic function.  Use this and the result of Exercise [[exercise:Bc093aec03 |Exercise]]  
 
to show that the probability <math>b_{iN}</math> of being absorbed in state <math>N</math> starting
is a harmonic function.  Use this and the result of [[exercise:Bc093aec03 |Exercise]] to show that the probability <math>b_{iN}</math> of being absorbed in state <math>N</math> starting in state <math>i</math> is
in
state <math>i</math> is


<math display="block">
<math display="block">
Line 32: Line 26:
\mbox{if}\,\,p \ne q.\cr}\right.
\mbox{if}\,\,p \ne q.\cr}\right.
</math>
</math>
For an alternative derivation of these results see Exercise [[exercise:087f70d94a |Exercise]].
 
For an alternative derivation of these results see [[exercise:087f70d94a |Exercise]].

Latest revision as of 00:53, 16 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Consider a random walker who moves on the integers 0, 1, ..., [math]N[/math], moving one step to the right with probability [math]p[/math] and one step to the left with probability [math]q = 1 - p[/math]. If the walker ever reaches 0 or [math]N[/math] he stays there. (This is the Gambler's Ruin problem of Exercise.)

If [math]p = q[/math] show that the function

[[math]] f(i) = i [[/math]]

is a harmonic function (see Exercise), and if [math]p \ne q[/math] then

[[math]] f(i) = \biggl(\frac {q}{p}\biggr)^i [[/math]]

is a harmonic function. Use this and the result of Exercise to show that the probability [math]b_{iN}[/math] of being absorbed in state [math]N[/math] starting in state [math]i[/math] is

[[math]] b_{iN} = \left \{ \matrix{ \frac iN, &\mbox{if}\,\, p = q, \cr \frac{({q \over p})^i - 1}{({q \over p})^{N} - 1}, & \mbox{if}\,\,p \ne q.\cr}\right. [[/math]]

For an alternative derivation of these results see Exercise.