exercise:A5b5ddac8d: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> A die is rolled twice. Let <math>X</math> denote the sum of the two numbers that turn up, and <math>Y</math> the difference of the numbers (specifically, the number on the first roll minus the number on the second). Show that <math>E(XY) = E(X)E...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> A die is rolled twice.  Let <math>X</math> denote the sum of the two
\newcommand{\mathds}{\mathbb}</math></div> A die is rolled twice.  Let <math>X</math> denote the sum of the two numbers that turn up, and <math>Y</math> the difference of the numbers (specifically, the number on the first roll minus the number on the second).  Show that <math>E(XY) = E(X)E(Y)</math>.  Are <math>X</math> and <math>Y</math> independent?
numbers that turn up, and <math>Y</math> the difference of the numbers (specifically, the number
on the first roll minus the number on the second).  Show that <math>E(XY) = E(X)E(Y)</math>.  Are
<math>X</math> and <math>Y</math> independent?

Latest revision as of 01:46, 16 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

A die is rolled twice. Let [math]X[/math] denote the sum of the two numbers that turn up, and [math]Y[/math] the difference of the numbers (specifically, the number on the first roll minus the number on the second). Show that [math]E(XY) = E(X)E(Y)[/math]. Are [math]X[/math] and [math]Y[/math] independent?