exercise:93a3662cf8: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Which of the following matrices are transition matrices for regular Markov chains? <ul><li> <math>\mat {P} = \pmatrix{ .5 & .5 \cr .5 & .5 }</math>. \smallskip </li> <li> <math>\mat {P} = \pmatrix{ .5 & .5 \cr 1 & 0 }</math>. \smallskip </li> <li...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Which of the following matrices are transition matrices
\newcommand{\mathds}{\mathbb}</math></div> Which of the following matrices are transition matrices for regular Markov chains?
for  
<ul style="list-style-type:lower-alpha"><li> <math>\mat {P} = \pmatrix{ .5 & .5 \cr .5 & .5 }</math>
regular Markov chains?
<ul><li> <math>\mat {P} = \pmatrix{ .5 & .5 \cr .5 & .5 }</math>.
\smallskip
</li>
</li>
<li> <math>\mat {P} = \pmatrix{ .5 & .5 \cr 1 & 0 }</math>.
<li> <math>\mat {P} = \pmatrix{ .5 & .5 \cr 1 & 0 }</math>
\smallskip
</li>
</li>
<li> <math>\mat {P} = \pmatrix{ 1/3 & 0 & 2/3 \cr 0 & 1 & 0 \cr 0 & 1/5 & 4/5}</math>.
<li> <math>\mat {P} = \pmatrix{ 1/3 & 0 & 2/3 \cr 0 & 1 & 0 \cr 0 & 1/5 & 4/5}</math>
\smallskip
</li>
</li>
<li> <math>\mat {P} = \pmatrix{ 0 & 1 \cr 1 & 0}</math>.
<li> <math>\mat {P} = \pmatrix{ 0 & 1 \cr 1 & 0}</math>
\smallskip
</li>
</li>
<li> <math>\mat {P} = \pmatrix{ 1/2 & 1/2 & 0 \cr 0 & 1/2 & 1/2 \cr 1/3 & 1/3 &
<li> <math>\mat {P} = \pmatrix{ 1/2 & 1/2 & 0 \cr 0 & 1/2 & 1/2 \cr 1/3 & 1/3 &
1/3}</math>.
1/3}</math>
\smallskip
</li>
</li>
</ul>
</ul>

Latest revision as of 21:45, 17 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Which of the following matrices are transition matrices for regular Markov chains?

  • [math]\mat {P} = \pmatrix{ .5 & .5 \cr .5 & .5 }[/math]
  • [math]\mat {P} = \pmatrix{ .5 & .5 \cr 1 & 0 }[/math]
  • [math]\mat {P} = \pmatrix{ 1/3 & 0 & 2/3 \cr 0 & 1 & 0 \cr 0 & 1/5 & 4/5}[/math]
  • [math]\mat {P} = \pmatrix{ 0 & 1 \cr 1 & 0}[/math]
  • [math]\mat {P} = \pmatrix{ 1/2 & 1/2 & 0 \cr 0 & 1/2 & 1/2 \cr 1/3 & 1/3 & 1/3}[/math]