exercise:9265c9975a: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Consider the Markov chain with transition matrix <math display="block"> \mat {P} = \pmatrix{ 1/2 & 1/3 & 1/6 \cr3/4 & 0 & 1/4 \cr 0 & 1 & 0}\ . </math> <ul><li> Show that this is a regular Markov chain. </li> <li> The process is started in state...")
 
No edit summary
 
Line 10: Line 10:
\mat {P} = \pmatrix{ 1/2 & 1/3 & 1/6 \cr3/4 & 0 & 1/4 \cr 0 & 1 & 0}\ .
\mat {P} = \pmatrix{ 1/2 & 1/3 & 1/6 \cr3/4 & 0 & 1/4 \cr 0 & 1 & 0}\ .
</math>
</math>
<ul><li> Show that this is a regular Markov chain.
<ul style="list-style-type:lower-alpha"><li> Show that this is a regular Markov chain.
</li>
</li>
<li> The process is started in state 1; find the probability that it is in
<li> The process is started in state 1; find the probability that it is in

Latest revision as of 21:45, 17 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Consider the Markov chain with transition matrix

[[math]] \mat {P} = \pmatrix{ 1/2 & 1/3 & 1/6 \cr3/4 & 0 & 1/4 \cr 0 & 1 & 0}\ . [[/math]]

  • Show that this is a regular Markov chain.
  • The process is started in state 1; find the probability that it is in state 3 after two steps.
  • Find the limiting probability vector [math]\mat{w}[/math].