exercise:958c6ba2a8: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Consider the Markov chain with general <math>2 \times 2</math> transition matrix <math display="block"> \mat {P} = \pmatrix{ 1 - a & a \cr b & 1 - b}\ . </math> <ul><li> Under what conditions is <math>\mat{P}</math> absorbing? </li> <li> Under wh...")
 
No edit summary
 
Line 11: Line 11:
\mat {P} = \pmatrix{ 1 - a & a \cr b & 1 - b}\ .
\mat {P} = \pmatrix{ 1 - a & a \cr b & 1 - b}\ .
</math>
</math>
<ul><li> Under what conditions is <math>\mat{P}</math> absorbing?
<ul style="list-style-type:lower-alpha"><li> Under what conditions is <math>\mat{P}</math> absorbing?
</li>
</li>
<li> Under what conditions is <math>\mat{P}</math> ergodic but not regular?
<li> Under what conditions is <math>\mat{P}</math> ergodic but not regular?

Latest revision as of 21:46, 17 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Consider the Markov chain with general [math]2 \times 2[/math]

transition matrix

[[math]] \mat {P} = \pmatrix{ 1 - a & a \cr b & 1 - b}\ . [[/math]]

  • Under what conditions is [math]\mat{P}[/math] absorbing?
  • Under what conditions is [math]\mat{P}[/math] ergodic but not regular?
  • Under what conditions is [math]\mat{P}[/math] regular?