exercise:6ee9322c6b: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be the transition matrix of a regular Markov chain. Assume that there are <math>r</math> states and let <math>N(r)</math> be the smallest integer <math>n</math> such that <math>\mat{P}</math> is regular if and only if <m...")
 
No edit summary
Line 6: Line 6:
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be the transition matrix of a regular
\newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be the transition matrix of a regular
Markov  
Markov chain.  Assume that there are <math>r</math> states and let <math>N(r)</math> be the smallest integer <math>n</math>
chain.  Assume that there are <math>r</math> states and let <math>N(r)</math> be the smallest
such that <math>\mat{P}</math> is regular if and only if <math>\mat {P}^{N(r)}</math> has no zero entries. Find a finite upper bound for <math>N(r)</math>.  See if you can determine <math>N(3)</math> exactly.
integer <math>n</math>
such that <math>\mat{P}</math> is regular if and only if <math>\mat {P}^{N(r)}</math> has no zero
entries.  
Find a finite upper bound for <math>N(r)</math>.  See if you can determine <math>N(3)</math> exactly.

Revision as of 21:56, 17 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]\mat{P}[/math] be the transition matrix of a regular

Markov chain. Assume that there are [math]r[/math] states and let [math]N(r)[/math] be the smallest integer [math]n[/math] such that [math]\mat{P}[/math] is regular if and only if [math]\mat {P}^{N(r)}[/math] has no zero entries. Find a finite upper bound for [math]N(r)[/math]. See if you can determine [math]N(3)[/math] exactly.