exercise:25029bf420: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> (Alternate proof of Theorem) Let <math>\mat{P}</math> be the transition matrix of an ergodic Markov chain. Let <math>\mat{x}</math> be any column vector such that <math>\mat{P} \mat{x} = \mat{ x}</math>. Let <m...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> (Alternate proof of [[guide:E5c38a1e8a#thm 11.3.8 |Theorem]])  Let
\newcommand{\mathds}{\mathbb}</math></div> (Alternate proof of [[guide:E5c38a1e8a#thm 11.3.8 |Theorem]])  Let <math>\mat{P}</math> be the transition matrix of an ergodic  Markov chain.  Let <math>\mat{x}</math> be any column vector such that
<math>\mat{P}</math> be the
 
transition matrix of an ergodic  Markov chain.  Let <math>\mat{x}</math> be any column
vector such that
<math>\mat{P}
<math>\mat{P}
\mat{x} =
\mat{x} =
\mat{ x}</math>.  Let <math>M</math> be the  maximum value of the components of <math>\mat{x}</math>.  
\mat{ x}</math>.  Let <math>M</math> be the  maximum value of the components of <math>\mat{x}</math>.  
Assume that <math>x_i
Assume that <math>x_i = M</math>.  Show that if <math>p_{ij}  >  0</math> then <math>x_j = M</math>.  Use this to prove that
= M</math>.  Show that if <math>p_{ij}  >  0</math> then <math>x_j = M</math>.  Use this to prove that
<math>\mat{x}</math> must be a constant vector.
<math>\mat{x}</math>
must be a constant vector.

Latest revision as of 22:07, 17 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

(Alternate proof of Theorem) Let [math]\mat{P}[/math] be the transition matrix of an ergodic Markov chain. Let [math]\mat{x}[/math] be any column vector such that

[math]\mat{P} \mat{x} = \mat{ x}[/math]. Let [math]M[/math] be the maximum value of the components of [math]\mat{x}[/math]. Assume that [math]x_i = M[/math]. Show that if [math]p_{ij} \gt 0[/math] then [math]x_j = M[/math]. Use this to prove that [math]\mat{x}[/math] must be a constant vector.