exercise:D8cb650f0a: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be the transition matrix of an ergodic Markov chain. Let <math>\mat{w}</math> be a fixed probability vector (i.e., <math>\mat{w}</math> is a row vector with <math>\mat {w}\mat {P} = \mat {w}</math>). Show that if <math...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be the transition matrix of an ergodic
\newcommand{\mathds}{\mathbb}</math></div> Let <math>\mat{P}</math> be the transition matrix of an ergodic Markov chain.  Let <math>\mat{w}</math> be a fixed probability vector (i.e., <math>\mat{w}</math> is a row vector with <math>\mat {w}\mat {P} = \mat {w}</math>).  Show that if <math>w_i = 0</math> and <math>p_{ji}  >  0</math> then <math>w_j = 0</math>.  Use this to show that the fixed probability vector for an ergodic chain cannot have any 0 entries.
Markov  
chain.  Let <math>\mat{w}</math> be a fixed probability vector (i.e., <math>\mat{w}</math> is a row
vector  
with <math>\mat {w}\mat {P} = \mat {w}</math>).  Show that if <math>w_i = 0</math> and <math>p_{ji}  >  0</math>
then  
<math>w_j = 0</math>.  Use this to show that the fixed probability vector for an ergodic
chain
cannot have any 0 entries.

Latest revision as of 23:08, 17 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]\mat{P}[/math] be the transition matrix of an ergodic Markov chain. Let [math]\mat{w}[/math] be a fixed probability vector (i.e., [math]\mat{w}[/math] is a row vector with [math]\mat {w}\mat {P} = \mat {w}[/math]). Show that if [math]w_i = 0[/math] and [math]p_{ji} \gt 0[/math] then [math]w_j = 0[/math]. Use this to show that the fixed probability vector for an ergodic chain cannot have any 0 entries.