exercise:2812bf315f: Difference between revisions

From Stochiki
(Created page with "Let <math>X</math> and <math>Y</math> be two random variables defined on the finite sample space <math>\Omega</math>. Assume that <math>X</math>, <math>Y</math>, <math>X + Y</math>, and <math>X - Y</math> all have the same distribution. Determine <math>P(X = Y = 0) </math>. '''References''' {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6...")
 
No edit summary
 
Line 1: Line 1:
Let <math>X</math> and <math>Y</math> be two random variables defined on the finite sample space <math>\Omega</math>.  Assume that <math>X</math>, <math>Y</math>, <math>X + Y</math>, and <math>X - Y</math> all have
Let <math>X</math> and <math>Y</math> be two random variables defined on the finite sample space <math>\Omega</math>.  Assume that <math>X</math>, <math>Y</math>, <math>X + Y</math>, and <math>X - Y</math> all have
the same distribution.  Determine <math>P(X = Y = 0) </math>.
the same distribution.  Determine <math>P(X = Y = 0) </math>.
<ul class="mw-excansopts">
<li>0</li>
<li>0.2</li>
<li>0.5</li>
<li>0.8</li>
<li>1</li>
</ul>


'''References'''
'''References'''


{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}
{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}

Latest revision as of 01:12, 25 June 2024

Let [math]X[/math] and [math]Y[/math] be two random variables defined on the finite sample space [math]\Omega[/math]. Assume that [math]X[/math], [math]Y[/math], [math]X + Y[/math], and [math]X - Y[/math] all have the same distribution. Determine [math]P(X = Y = 0) [/math].

  • 0
  • 0.2
  • 0.5
  • 0.8
  • 1


References

Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.