exercise:2812bf315f: Difference between revisions
From Stochiki
(Created page with "Let <math>X</math> and <math>Y</math> be two random variables defined on the finite sample space <math>\Omega</math>. Assume that <math>X</math>, <math>Y</math>, <math>X + Y</math>, and <math>X - Y</math> all have the same distribution. Determine <math>P(X = Y = 0) </math>. '''References''' {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6...") |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math>X</math> and <math>Y</math> be two random variables defined on the finite sample space <math>\Omega</math>. Assume that <math>X</math>, <math>Y</math>, <math>X + Y</math>, and <math>X - Y</math> all have | Let <math>X</math> and <math>Y</math> be two random variables defined on the finite sample space <math>\Omega</math>. Assume that <math>X</math>, <math>Y</math>, <math>X + Y</math>, and <math>X - Y</math> all have | ||
the same distribution. Determine <math>P(X = Y = 0) </math>. | the same distribution. Determine <math>P(X = Y = 0) </math>. | ||
<ul class="mw-excansopts"> | |||
<li>0</li> | |||
<li>0.2</li> | |||
<li>0.5</li> | |||
<li>0.8</li> | |||
<li>1</li> | |||
</ul> | |||
'''References''' | '''References''' | ||
{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}} | {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}} |
Latest revision as of 01:12, 25 June 2024
Let [math]X[/math] and [math]Y[/math] be two random variables defined on the finite sample space [math]\Omega[/math]. Assume that [math]X[/math], [math]Y[/math], [math]X + Y[/math], and [math]X - Y[/math] all have the same distribution. Determine [math]P(X = Y = 0) [/math].
- 0
- 0.2
- 0.5
- 0.8
- 1
References
Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.