exercise:Cc33941899: Difference between revisions

From Stochiki
(Created page with "Let <math>X</math> and <math>Y</math> be independent random variables with uniform density functions on <math>[0,1]</math>. Find <math>E((X + Y)^2)</math>. '''References''' {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let <math>X</math> and <math>Y</math> be independent random variables with uniform
Let <math>X</math> and <math>Y</math> be independent random variables with uniform
density functions on <math>[0,1]</math>.  Find <math>E((X + Y)^2)</math>.
density functions on <math>[0,1]</math>.  Find <math>E((X + Y)^2)</math>.
<ul class="mw-excansopts">
<li>2/3</li>
<li>3/4</li>
<li>1</li>
<li>7/6</li>
<li>3/2</li>
</ul>


'''References'''
'''References'''


{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}
{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}

Latest revision as of 00:47, 28 June 2024

Let [math]X[/math] and [math]Y[/math] be independent random variables with uniform density functions on [math][0,1][/math]. Find [math]E((X + Y)^2)[/math].

  • 2/3
  • 3/4
  • 1
  • 7/6
  • 3/2

References

Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.