exercise:41f9b178df: Difference between revisions

From Stochiki
(Created page with "The loss in year 1, <math>X</math>, has probability density function <math display = "block"> f(x) = \begin{cases} \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha +1}}, x...")
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 9: Line 9:
</math>
</math>


A deductible equalling the loss in year 1 is applicable in year 2. If the loss in year 2, with deductible in effect, equals <math>Y</math>, determine the joint density function for <math>X,Y</math>.
A deductible equalling the loss in year 1 is applicable in year 2. If the payment in year 2 equals <math>Y</math>, determine the joint density function for <math>X,Y</math>, given that <math>Y>0</math>.


<ol style="list-style-type:upper-alpha">
<ul class="mw-excansopts">
<li><math display = "block">
<li><math display = "block">
\begin{align*}
\begin{align*}
f_{X,Y}(x,y) &=  \begin{cases}
g(x,y) &=  \begin{cases}
\frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y > 0, x > 0 \\
\frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y > 0, x > 0 \\
0, \, \textrm{Otherwise}
0, \, \textrm{Otherwise}
Line 22: Line 22:
<li><math display = "block">
<li><math display = "block">
\begin{align*}
\begin{align*}
f_{X,Y}(x,y) &= \begin{cases}
g(x,y) &= \begin{cases}
\frac{\alpha^2}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y > 0, x > 0 \\
\frac{\alpha^2}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y > 0, x > 0 \\
0, \, \textrm{Otherwise}
0, \, \textrm{Otherwise}
Line 30: Line 30:
<li><math display = "block">
<li><math display = "block">
\begin{align*}
\begin{align*}
f_{X,Y}(x,y) &= \begin{cases}
g(x,y) &= \begin{cases}
\frac{\alpha^2\theta^{\alpha}}{(y + x + \theta)^{\alpha + 1}}, y > 0, x > 0 \\
\frac{\alpha^2\theta^{\alpha}}{(y + x + \theta)^{\alpha + 1}}, y > 0, x > 0 \\
0, \, \textrm{Otherwise}
0, \, \textrm{Otherwise}
Line 38: Line 38:
<li><math display = "block">
<li><math display = "block">
\begin{align*}
\begin{align*}
f_{X,Y}(x,y) &= \begin{cases}
g(x,y) &= \begin{cases}
\frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha}}, y > 0, x > 0 \\
\frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha}}, y > 0, x > 0 \\
0, \, \textrm{Otherwise}
0, \, \textrm{Otherwise}
Line 46: Line 46:
<li><math display = "block">
<li><math display = "block">
\begin{align*}
\begin{align*}
f_{X,Y}(x,y) &= \begin{cases}
g(x,y) &= \begin{cases}
\frac{\alpha\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y > 0, x > 0 \\
\frac{\alpha\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y > 0, x > 0 \\
0, \, \textrm{Otherwise}
0, \, \textrm{Otherwise}
Line 52: Line 52:
\end{align*}
\end{align*}
</math></li>
</math></li>
</ol>
</ul>

Latest revision as of 14:06, 15 July 2024

The loss in year 1, [math]X[/math], has probability density function

[[math]] f(x) = \begin{cases} \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha +1}}, x \geq 0 \\ 0, x \lt 0 \end{cases} [[/math]]

A deductible equalling the loss in year 1 is applicable in year 2. If the payment in year 2 equals [math]Y[/math], determine the joint density function for [math]X,Y[/math], given that [math]Y\gt0[/math].

  • [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha^2}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]