exercise:E5b7173007: Difference between revisions

From Stochiki
(Created page with "Let <math>X,Y</math> be any two random variables. Which of the following statements is always true: <ol style="list-style-type:upper-alpha"> <li><math>|\operatorname{Cov}(X,Y...")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let <math>X,Y</math> be any two random variables. Which of the following statements is always true:
Let <math>X,Y</math> be any two random variables with a joint density function. Suppose that <math display = "block">\operatorname{E}[X|Y] = g(Y), \, g(y) = E[X|Y=y].</math>


<ol style="list-style-type:upper-alpha">
Which of the following statements is always true:
 
<ul class="mw-excansopts">
<li><math>|\operatorname{Cov}(X,Y)|  < |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|</math></li>
<li><math>|\operatorname{Cov}(X,Y)|  < |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|</math></li>
<li><math>|\operatorname{Cov}(X,Y)|  > |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|</math></li>
<li><math>|\operatorname{Cov}(X,Y)|  > |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|</math></li>
Line 7: Line 9:
<li>If <math>\operatorname{Cov}(\operatorname{E}[X | Y],Y) = 0</math> then <math>X </math> and <math>Y</math> are independent.</li>
<li>If <math>\operatorname{Cov}(\operatorname{E}[X | Y],Y) = 0</math> then <math>X </math> and <math>Y</math> are independent.</li>
<li>If <math>\operatorname{Cov}(X,Y)  = \operatorname{Cov}(\operatorname{E}[X | Y],Y)</math> for every <math>Y</math> then <math>X = \operatorname{E}[X | Y]</math>.</li>
<li>If <math>\operatorname{Cov}(X,Y)  = \operatorname{Cov}(\operatorname{E}[X | Y],Y)</math> for every <math>Y</math> then <math>X = \operatorname{E}[X | Y]</math>.</li>
</ol>
</ul>

Latest revision as of 22:00, 19 July 2024

Let [math]X,Y[/math] be any two random variables with a joint density function. Suppose that

[[math]]\operatorname{E}[X|Y] = g(Y), \, g(y) = E[X|Y=y].[[/math]]

Which of the following statements is always true:

  • [math]|\operatorname{Cov}(X,Y)| \lt |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|[/math]
  • [math]|\operatorname{Cov}(X,Y)| \gt |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|[/math]
  • [math]\operatorname{Cov}(X,Y) = \operatorname{Cov}(\operatorname{E}[X | Y],Y)[/math]
  • If [math]\operatorname{Cov}(\operatorname{E}[X | Y],Y) = 0[/math] then [math]X [/math] and [math]Y[/math] are independent.
  • If [math]\operatorname{Cov}(X,Y) = \operatorname{Cov}(\operatorname{E}[X | Y],Y)[/math] for every [math]Y[/math] then [math]X = \operatorname{E}[X | Y][/math].