guide:17598b3b3c: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\ex}[1]{\item } | |||
\newcommand{\sx}{\item} | |||
\newcommand{\x}{\sx} | |||
\newcommand{\sxlab}[1]{} | |||
\newcommand{\xlab}{\sxlab} | |||
\newcommand{\prov}[1] {\quad #1} | |||
\newcommand{\provx}[1] {\quad \mbox{#1}} | |||
\newcommand{\intext}[1]{\quad \mbox{#1} \quad} | |||
\newcommand{\R}{\mathrm{\bf R}} | |||
\newcommand{\Q}{\mathrm{\bf Q}} | |||
\newcommand{\Z}{\mathrm{\bf Z}} | |||
\newcommand{\C}{\mathrm{\bf C}} | |||
\newcommand{\dt}{\textbf} | |||
\newcommand{\goesto}{\rightarrow} | |||
\newcommand{\ddxof}[1]{\frac{d #1}{d x}} | |||
\newcommand{\ddx}{\frac{d}{dx}} | |||
\newcommand{\ddt}{\frac{d}{dt}} | |||
\newcommand{\dydx}{\ddxof y} | |||
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} | |||
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} | |||
\newcommand{\dist}{\mathrm{distance}} | |||
\newcommand{\arccot}{\mathrm{arccot\:}} | |||
\newcommand{\arccsc}{\mathrm{arccsc\:}} | |||
\newcommand{\arcsec}{\mathrm{arcsec\:}} | |||
\newcommand{\arctanh}{\mathrm{arctanh\:}} | |||
\newcommand{\arcsinh}{\mathrm{arcsinh\:}} | |||
\newcommand{\arccosh}{\mathrm{arccosh\:}} | |||
\newcommand{\sech}{\mathrm{sech\:}} | |||
\newcommand{\csch}{\mathrm{csch\:}} | |||
\newcommand{\conj}[1]{\overline{#1}} | |||
\newcommand{\mathds}{\mathbb} | |||
</math></div> | |||
===Calculus of Sine and Cosine.=== | |||
The formulas for the derivative and integral of the functions <math>\sin</math> | |||
and <math>\cos</math> follow in a straightforward way from one fundamental limit theorem. It is | |||
{{proofcard|Theorem|theorem-1| | |||
<math display="block"> | |||
\lim_{t \rightarrow 0} \frac{\sin t}{t} = 1. | |||
</math> | |||
<div id="fig 6.6" class="d-flex justify-content-center"> | |||
[[File:guide_c5467_scanfig6_6.png | 400px | thumb | ]] | |||
</div> | |||
|It is convenient first to impose the restriction that <math>t > 0</math> and prove that the limit from | |||
the right equals 1; i.e., | |||
<span id{{=}}"eq6.2.1"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\lim_{t \rightarrow 0+} \frac{\sin t}{t} = 1. | |||
\label{eq6.2.1} | |||
\end{equation} | |||
</math> | |||
Since, in proving (1), we are concerned only with small values of <math>t</math>, we may assume | |||
that <math>t < \frac{\pi}{2}</math>. Thus we have <math>0 < t < \frac{\pi}{2}</math> and, as a consequence, | |||
<math>\sin t > 0</math> and <math>\cos t > 0</math>. Let <math>S</math> be the region in the plane bounded by the circle <math>x^2 + y^2 = 1</math>, | |||
the positive <math>x</math>-axis, and the line segment which joins the origin to the point <math>(\cos t, \sin t)</math>; i.e., | |||
<math>S</math> is the shaded sector in Figure 6. Since | |||
the area of the circle is <math>\pi</math> and the circumference is <math>2\pi</math>, the area of <math>S</math> is equal to | |||
<math>\frac{t}{2\pi} \cdot \pi = \frac{t}{2}</math>. Next, consider the right triangle <math>T_{1}</math> with vertices (0, 0), | |||
<math>(\cos t, \sin t)</math>, and <math>(\cos t, 0)</math>. Since the area of any triangle is one half the base times the | |||
altitude, it follows that <math>area(T_{1}) = \frac{1}{2} \cos t \sin t</math>. The line which passes through (0,0) | |||
and <math>(\cos t, \sin t)</math> has slope <math>\frac{\sin t}{\cos t}</math> and equation <math>y =\frac{\sin t}{\cos t}x</math>. | |||
Setting <math>x = 1</math>, we see that it passes through the point | |||
<math>\Bigl(1,\frac{\sin t}{\cos t} \Bigr)</math>, as shown in Figure 6. Hence if <math>T_{2}</math> is the right triangle with | |||
vertices (0,0), <math>\Bigl(1, \frac{\sin t}{\cos t} \Bigr)</math>, and (1, 0), then | |||
<math display="block"> | |||
area(T_{2}) = \frac{1}{2} \cdot 1 \cdot \frac{\sin t}{\cos t} = \frac{1}{2} \frac{\sin t}{\cos t}. | |||
</math> | |||
Since <math>T_{1}</math> is a subset of <math>S</math> and since <math>S</math> is a subset of <math>T_{2}</math>, it follows by a fundamental property of area [see (1.3), page 171] that | |||
<math display="block"> | |||
area(T_{1}) \leq area(S) \leq area(T_{2}). | |||
</math> | |||
Hence | |||
<math display="block"> | |||
\frac{1}{2} \cos t \sin t \leq \frac{t}{2} \leq \frac{1}{2} \frac{\sin t}{\cos t} . | |||
</math> | |||
If we multiply through by <math>\frac{2}{\sin t}</math>, we get | |||
<math display="block"> | |||
\cos t \leq \frac{t}{\sin t} \leq \frac{ 1}{\cos t}. | |||
</math> | |||
Taking reciprocals and reversing the direction of the inequalities, we obtain finally | |||
<span id{{=}}"eq6.2.2"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\frac{1}{\cos t} \geq \frac{\sin t}{t} \geq \cos t. | |||
\label{eq6.2.2} | |||
\end{equation} | |||
</math> | |||
With these inequalities, the proof of (1) is essentially finished. Since the function <math>\cos</math> is continuous, we have <math>\lim_{t \rightarrow 0+} \cos t = \cos 0 = 1</math>. Moreover, the limit of a quotient is the quotient of the limits, and so <math>\lim_{t \rightarrow 0+} \frac{1}{\cos t} = \frac{1}{1} = 1</math>. | |||
Thus <math>\frac{\sin t}{t}</math> lies between two quantities both of which approach 1 as <math>t</math> approaches zero from the right. It follows that | |||
<math display="block"> | |||
\lim_{t \rightarrow 0+} \frac{\sin t}{t} = 1. | |||
</math> | |||
It is now a simple matter to remove the restriction <math>t > 0</math>. Since <math>\frac{\sin t}{t} = \frac{- \sin t}{-t} = \frac{\sin(-t)}{-t}</math>, we know that | |||
<span id{{=}}"eq6.2.3"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\frac{\sin t}{t} = \frac{\sin |t|}{|t|}. | |||
\label{eq6.2.3} | |||
\end{equation} | |||
</math> | |||
As <math>t</math> approaches zero, so does <math>|t|</math>; and as <math>|t|</math> approaches zero, we have just proved that the right side of (3) approaches 1. The left side, therefore, also a pproaches 1, and so the proof is complete.}} | |||
It is interesting to compare actual numerical values of <math>t</math> and <math>\sin t</math>. | |||
Table 1 illustrates the limit theorem (2.1) quite effectively. | |||
\medskip | |||
<span id="table 6.1"/> | |||
{|class="table" | |||
|- | |||
|\centering <math>t</math> || <math>\sin t</math> | |||
|- | |||
|0.50 || 0.4794 | |||
|- | |||
|0.40 || 0.3894 | |||
|- | |||
|0.30 || 0.2955 | |||
|- | |||
|0.20 || 0.1987 | |||
|- | |||
|0.10 || 0.0998 | |||
|- | |||
|0.08 || 0.0799 | |||
|- | |||
|0.06 || 0.0600 | |||
|- | |||
|0.04 || 0.0400 | |||
|- | |||
|0.02 || 0.0200 | |||
|} | |||
\medskip | |||
A useful corollary of (2.1) is | |||
{{proofcard|Theorem|theorem-2| | |||
<math display="block"> | |||
\lim_{t \rightarrow 0} \frac{1 - \cos t}{t} = 0. | |||
</math> | |||
|Using trigonometric identities, we write <math>\frac{1 - \cos t}{t}</math> in such a form that (2.1) is applicable. | |||
<math display="block"> | |||
\begin{array}{rcll} | |||
1 &=& & \cos^{2} \frac{t}{2} + \sin^{2}\frac{t}{ 2},\\ | |||
\cos t &=& \cos (\frac{t}{2} + \frac{t}{2}) =& \cos^{2} \frac{t}{2} - \sin^{2} \frac{t}{2}. | |||
\end{array} | |||
</math> | |||
Hence <math>1 - \cos t = 2 \sin^{2} \frac{t}{2}</math>, and | |||
<math display="block"> | |||
\frac{1 - \cos t}{t} = \frac{t}{2} \sin^{2} \frac{t}{2} | |||
= \Bigl(\frac{\sin \frac{t}{2}}{\frac{t}{2}} \Bigr) \sin \frac{t}{2}. | |||
</math> | |||
As <math>t</math> approaches zero, <math>\frac{t}{2}</math> also approaches zero, so, by (2.1), the quantity | |||
<math display="block"> | |||
\frac{\sin \frac{t}{2}}{\frac{t}{2}} | |||
</math> | |||
approaches 1. Moreover, <math>\sin</math> is a continuous function, and therefore <math>\sin \frac{t}{2}</math> approaches <math>\sin 0 = 0</math>. The product therefore approaches <math>1 \cdot 0 = 0</math>, and the proof is complete.}} | |||
In writing values of the functions <math>\sin</math> and <math>\cos</math>, we have thus far avoided the letter <math>x</math> and have not written <math>\sin x</math> and <math>\cos x</math> simply because the point on the circle <math>x^{2} + y^{2} = 1</math> whose coordinates define the value of <math>\cos</math> and <math>\sin</math> has nothing to do with, and generally does not lie on, the <math>x</math>-axis. However, when we study <math>\sin</math> and <math>\cos</math> as two real-valued functions of a real variable, it is natural to use <math>x</math> as the independent variable. | |||
We shall not hesitate to do so from now on. | |||
'''Example''' | |||
Evaluate the limits | |||
<math display="block"> | |||
\mbox{(a)}\;\;\; \lim_{x \rightarrow 0} \frac{\sin 3x}{\sin 7x},\;\;\; | |||
\mbox{(b)}\;\;\; \lim_{x \rightarrow 0} \frac{1 - \cos^{2} x}{x}, \;\;\; | |||
\mbox{(c)}\;\;\; \lim_{x \rightarrow 0} \frac{\cos x}{\sin x}. | |||
</math> | |||
We evaluate the first two limits by writing the quotients in such a form that the fundamental trigonometric limit theorem, <math>\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1</math>, is applicable. For (a), | |||
<math display="block"> | |||
\frac{\sin 3x}{\sin 7x} = \frac{\sin 3x}{3x} \frac{7x}{\sin 7x} \frac{3}{7}. | |||
</math> | |||
As <math>x</math> approaches zero, so does <math>3x</math> and so does <math>7x</math>. Hence <math>\frac{\sin 3x}{3x}</math> approaches 1, and <math>\frac{7x}{\sin 7x} = \Bigl(\frac{\sin 7x}{7x} \Bigr)^{-1}</math> approaches <math>1^{-1} = 1</math>. | |||
We conclude that | |||
<math display="block"> | |||
\lim_{x \rightarrow 0} \frac{\sin 3x}{\sin 7x} = 1 \cdot 1 \cdot \frac{3}{7} = \frac{3}{7}. | |||
</math> | |||
To do (b), we use the identity <math>\cos^{2} x + \sin^{2} x = 1</math>. Thus | |||
<math display="block"> | |||
\frac{1 - \cos^{2}x}{x} = \frac{\sin^{2} x}{x} = \sin x \frac{\sin x}{x}. | |||
</math> | |||
As <math>x</math> approaches zero, <math>\sin x</math> approaches <math>\sin 0 = 0</math>, and <math>\frac{\sin x}{x}</math> approaches 1. Hence | |||
<math display="block"> | |||
\lim_{x \rightarrow 0} \frac{1 - \cos^{2}x}{x} = 0 \cdot 1 = 0. | |||
</math> | |||
For (c), no limit exists. The numerator approaches 1, and the denominator approaches zero. Note that we cannot even write the limit as <math>+\infty</math> or <math>-\infty</math> because <math>\sin x</math> may be either positive or negative. As a result, <math>\frac{\cos x}{\sin x}</math> takes on both arbitrarily large positive values and arbitrarily large negative values as <math>x</math> approaches zero. | |||
We are now ready to find <math>\frac{d}{dx} \sin x</math>. The value of the derivative at an arbitrary number <math>a</math> is by definition | |||
<math display="block"> | |||
\Bigl(\frac{d}{dx} \sin x \Bigr) (a) = \lim_{t \rightarrow 0} \frac{\sin (a + t) - \sin a}{t}. | |||
</math> | |||
As always, the game is to manipulate the quotient into a form in which we can see what the limit is. Since <math>\sin(a + t) = \sin a \cos t + \cos a \sin t</math>, we have | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\frac{\sin(a + t) - \sin a}{t} &=& \frac{\sin a \cos t + \cos a \sin t - \sin a}{t}\\ | |||
&=& \cos a \frac{\sin t}{t} - \sin a \frac{1 - \cos t}{t}. | |||
\end{eqnarray*} | |||
</math> | |||
As <math>t</math> approaches 0, the quantities <math>\cos a</math> and <math>\sin a</math> stay fixed. Moreover, <math>\frac{\sin t}{t}</math> approaches 1, and <math>\frac{1 - \cos t}{t}</math> approaches 0. Hence, the right side of the above equation approaches | |||
<math>(\cos a) \cdot 1 - (\sin a) \cdot 0 = \cos a</math>. We conclude that | |||
<math display="block"> | |||
\Bigl (\frac{d}{dx} \sin x \Bigr) (a) = \cos a, \;\;\;\mbox{for every real number}\; a. | |||
</math> | |||
Writing this result as an equality between functions, we get the simpler form | |||
{{proofcard|Theorem|theorem-3| | |||
<math display="block"> | |||
\frac{d}{dx} \sin x= \cos x. | |||
</math>|}} | |||
The derivative of the cosine may be found from the derivative of the sine using the Chain Rule | |||
and the twin identities <math>\cos x = \sin \Bigl(\frac{\pi}{2} - x \Bigr)</math> and <math>\sin x = \cos \Bigl(\frac{\pi}{2} - x \Bigr)</math> [see (1 6), page 286]. | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\frac{d}{dx} \cos x = \frac{d}{dx} \sin \Bigl(\frac{\pi}{2} - x \Bigr) | |||
&=& \cos \Bigl(\frac{\pi}{2} - x \Bigr) \frac{d}{dx} \Bigl(\frac{\pi}{2} - x \Bigr) \\ | |||
&=& \cos \Bigl(\frac{\pi}{2} - x \Bigr) (-1) = - \sin x. | |||
\end{eqnarray*} | |||
</math> | |||
Writing this result in a single equation, we have | |||
{{proofcard|Theorem|theorem-4| | |||
<math display="block"> | |||
\frac{d}{dx} \cos x = - \sin x. | |||
</math>|}} | |||
'''Example''' | |||
Find the following derivatives. | |||
<math display="block"> | |||
\begin{array}{ll} | |||
\mbox{(a)}\;\;\; \frac{d}{dx} \sin(x^{2} + 1), &\;\;\; \mbox{(c)}\;\;\; \frac{d}{dt} \sin e^{t}, \\ | |||
\mbox{(b)}\;\;\; \frac{d}{dx} \cos 7x, &\;\;\; \mbox{(d)}\;\;\; \frac{d}{dx} \ln (\cos x)^2. | |||
\end{array} | |||
</math> | |||
These are routine exercises which combine the basic derivatives with the Chain Rule. | |||
For (a) we have | |||
<math display="block"> | |||
\frac{d}{dt} \sin(x^2 + 1 ) = \cos(x^2 + 1 ) \frac{d}{dx} (x^{2} + 1 ) = 2x \cos(x^{2} + 1 ). | |||
</math> | |||
The solution to (b) is | |||
<math display="block"> | |||
\frac{d}{dx} \cos 7x = - \sin 7x \frac{d}{dx} 7x = - 7 \sin 7x. | |||
</math> | |||
For (c), | |||
<math display="block"> | |||
\frac{d}{dt} \sin e^{t} = \cos e^{t} \frac{d}{dt} e^{t} = e^{t} \cos e^{t}, | |||
</math> | |||
and for (d), | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\frac{d}{dx} \ln (\cos x)^2 &=& \frac{1}{(\cos x)^{2}} \frac{d}{dx} (\cos x)^2 \\ | |||
&=& \frac{1}{(\cos x)^{2}} 2 \cos x \frac{d}{dx} \cos x \\ | |||
&=& \frac{-2\cos x \sin x}{(\cos x)^{2}} = -\frac{2 \sin x}{\cos x}. | |||
\end{eqnarray*} | |||
</math> | |||
Every derivative formula has its corresponding integral formula. For the trigonometric | |||
functions <math>\sin</math> and <math>\cos</math>, they are | |||
{{proofcard|Theorem|theorem-5| | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sin x dx &=& -\cos x + c, \\ | |||
\int \cos x dx &=& \sin x + c. | |||
\end{eqnarray*} | |||
</math>|}} | |||
The proofs consist of simply verifying that the derivative of the proposed integral is the integrand. For example, | |||
<math display="block"> | |||
\frac{d}{dx} (-\cos x + c) = - \frac{d}{dx} \cos x = \sin x. | |||
</math> | |||
'''Example''' | |||
Find the following integrals. | |||
<math display="block"> | |||
(a)\; \int \sin 8x dx, \;\;\;(b)\; \int x \cos(x^2) dx, \;\;\;(c)\; \int \cos^{5}x \sin x dx. | |||
</math> | |||
The solutions use only the basic integral formulas and the fact that if <math>F' = f</math>, then <math>\int f(u) \frac{du}{dx} = F(u) + c</math>. Integral (a) is simple enough to write down at a glance: | |||
<math display="block"> | |||
\int \sin 8x dx = - \frac{1}{8} \cos 8x + c. | |||
</math> | |||
To do (b), let <math>u = x^2</math>. Then <math>\frac{du}{dx} = 2x</math>, and | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int x \cos(x^2) dx &=& \frac{1}{2}(\cos(x^2))2x dx \\ | |||
&=& \frac{1}{2} \int (\cos u) \frac{du}{dx}dx \\ | |||
&=& \frac{1}{2} \sin u + c \\ | |||
&=& 2 \sin (x^2) + c. | |||
\end{eqnarray*} | |||
</math> | |||
For (c), we let <math>u = \cos x</math>. Then <math>\frac{du}{dx} = -\sin x</math>. Hence | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \cos^{5} x \sin x dx &=& - \int \cos^{5} x (- \sin x) dx \\ | |||
&=& - \int u^{5} \frac{du}{dx} dx \\ | |||
&=& - \frac{1}{6} u^{6} + c \\ | |||
&=& - \frac{1}{6} \cos^{6} x + c. | |||
\end{eqnarray*} | |||
</math> | |||
The graphs of the functions <math>\sin</math> and <math>\cos</math> are extremely interesting and important curves. | |||
To begin with, let us consider the graph of <math>\sin x</math> only for <math>0 \leq x \leq \frac{\pi}{2}</math>. A few isolated points can be plotted immediately (see Table 2). | |||
\medskip | |||
<span id="table 6.2"/> | |||
{|class="table" | |||
|- | |||
|<math>x</math> || <math>y = \sin x</math> | |||
|- | |||
|0 || 0 | |||
|- | |||
|<math>\frac{\pi}{6}</math> || <math>\frac{1}{2}</math> | |||
|- | |||
|<math>\frac{\pi}{4}</math> || <math>\frac{1}{2} \sqrt 2</math> = 0.71 (approximately) | |||
|- | |||
|<math>\frac{\pi}{3}</math> || <math>\frac{1}{2} \sqrt 3</math> = 0.87 (approximately) | |||
|- | |||
|<math>\frac{\pi}{2}</math> || 1 | |||
|} | |||
\medskip | |||
The slope of the graph is given by the derivative, <math>\frac{d}{dx} \sin x = \cos x</math>. | |||
At the origin it is <math>\cos 0 = 1</math>, and, where <math>x = \frac{\pi}{2}</math> the slope is <math>\cos \frac{\pi}{2} = 0</math>. | |||
Since | |||
<math display="block"> | |||
\frac{d}{dx} \sin x = \cos x > 0 \;\;\;\mbox{if}\; 0 < x < \frac{\pi}{2}, | |||
</math> | |||
we know that <math>\sin x</math> is a strictly increasing function on the open interval <math>\Bigl(0, \frac{\pi}{2} \Bigr)</math>. In addition, there are no points of inflection on the open interval and the curve is concave downward there because | |||
<math display="block"> | |||
\frac{d^2}{dx^2} \sin x = \frac{d}{dx} \cos x = -\sin x < 0 \;\;\; \mbox{if}\; 0 < x < \frac{\pi}{2}. | |||
</math> | |||
On the other hand, the second derivative changes sign at <math>x = 0</math>, and so there is a point of inflection at the origin. With all these facts we can draw quite an accurate graph. It is shown in Figure 7. | |||
<div id="fig 6.7" class="d-flex justify-content-center"> | |||
[[File:guide_c5467_scanfig6_7.png | 400px | thumb | ]] | |||
</div> | |||
It is now a simple matter to fill in as much of the rest of the graph of <math>\sin x</math> as we like. For every | |||
real number <math>x</math>, the points <math>x</math> and <math>\pi - x</math> on the real number line are symmetrically located about the point <math>\frac{\pi}{2}</math>. The midpoint between <math>x</math> and <math>\pi - x</math> is given by <math>\frac{x + (\pi - x)}{2} = \frac{\pi}{2}</math>. As <math>x</math> increases from 0 to <math>\frac{\pi}{2}</math> the number <math>\pi - x</math> decreases from <math>\pi</math> to <math>\frac{\pi}{2}</math>. Moreover, | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\sin(\pi - x) &=& \sin \pi \cos x - \cos \pi \sin x \\ | |||
&=& 0 \cdot \cos x - (-1) \cdot \sin x \\ | |||
&=& \sin x. | |||
\end{eqnarray*} | |||
</math> | |||
It follows that the graph of <math>\sin x</math> on the interval <math>\Bigl[\frac{\pi}{2}, \pi \Bigr]</math> is the mirror image of the graph on <math>\Bigl[0, \frac{\pi}{2} \Bigr]</math> reflected across the line <math>x = \frac{\pi}{2}</math> . This is the dashed curve in Figure 7. Now, because <math>\sin x</math> is an odd function, its graph for <math>x \leq 0</math> is obtained by reflecting the graph for <math>x \geq 0</math> about the origin (i.e., reflecting first about one coordinate axis and then the other). This gives us the graph for <math>-\pi \leq x \leq \pi</math>. Finally, since <math>\sin x</math> is a periodic function with period <math>2\pi</math>, its values repeat after intervals of length <math>2\pi</math>. It follows that the entire graph of <math>\sin x</math> is the infinite wave, part of which is shown in Figure 8. | |||
<div id="fig 6.8" class="d-flex justify-content-center"> | |||
[[File:guide_c5467_scanfig6_8.png | 400px | thumb | ]] | |||
</div> | |||
The graph of <math>\cos x</math> is obtained by translating (sliding) the graph of <math>\sin x</math> to the left a distance <math>\frac{\pi}{2}</math>. This geometric assertion is equivalent to the algebraic equation <math>\cos x = \sin \Bigl(x + \frac{\pi}{2} \Bigr).</math> But this follows from the trigonometric identity | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\sin \Bigl(x + \frac{\pi}{2} \Bigr) &=& \sin x \cos \frac{\pi}{2} + \cos x \sin \frac{\pi}{2}\\ | |||
&=& (\sin x) \cdot 0 + (\cos x) \cdot 1\\ | |||
&=& \cos x. | |||
\end{eqnarray*} | |||
</math> | |||
The graphs of <math>\cos x</math> and <math>\sin x</math> are shown together in Figure 9. | |||
<div id="fig 6.9" class="d-flex justify-content-center"> | |||
[[File:guide_c5467_scanfig6_9.png | 400px | thumb | ]] | |||
</div> | |||
\end{exercise} | |||
==General references== | |||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Revision as of 00:08, 3 November 2024
Calculus of Sine and Cosine.
The formulas for the derivative and integral of the functions [math]\sin[/math] and [math]\cos[/math] follow in a straightforward way from one fundamental limit theorem. It is
It is convenient first to impose the restriction that [math]t \gt 0[/math] and prove that the limit from the right equals 1; i.e.,
It is now a simple matter to remove the restriction [math]t \gt 0[/math]. Since [math]\frac{\sin t}{t} = \frac{- \sin t}{-t} = \frac{\sin(-t)}{-t}[/math], we know that
{{{4}}}
It is interesting to compare actual numerical values of [math]t[/math] and [math]\sin t[/math]. Table 1 illustrates the limit theorem (2.1) quite effectively. \medskip
\centering [math]t[/math] | [math]\sin t[/math] |
0.50 | 0.4794 |
0.40 | 0.3894 |
0.30 | 0.2955 |
0.20 | 0.1987 |
0.10 | 0.0998 |
0.08 | 0.0799 |
0.06 | 0.0600 |
0.04 | 0.0400 |
0.02 | 0.0200 |
\medskip A useful corollary of (2.1) is
Using trigonometric identities, we write [math]\frac{1 - \cos t}{t}[/math] in such a form that (2.1) is applicable.
In writing values of the functions [math]\sin[/math] and [math]\cos[/math], we have thus far avoided the letter [math]x[/math] and have not written [math]\sin x[/math] and [math]\cos x[/math] simply because the point on the circle [math]x^{2} + y^{2} = 1[/math] whose coordinates define the value of [math]\cos[/math] and [math]\sin[/math] has nothing to do with, and generally does not lie on, the [math]x[/math]-axis. However, when we study [math]\sin[/math] and [math]\cos[/math] as two real-valued functions of a real variable, it is natural to use [math]x[/math] as the independent variable. We shall not hesitate to do so from now on.
Example Evaluate the limits
We evaluate the first two limits by writing the quotients in such a form that the fundamental trigonometric limit theorem, [math]\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1[/math], is applicable. For (a),
As [math]x[/math] approaches zero, so does [math]3x[/math] and so does [math]7x[/math]. Hence [math]\frac{\sin 3x}{3x}[/math] approaches 1, and [math]\frac{7x}{\sin 7x} = \Bigl(\frac{\sin 7x}{7x} \Bigr)^{-1}[/math] approaches [math]1^{-1} = 1[/math]. We conclude that
To do (b), we use the identity [math]\cos^{2} x + \sin^{2} x = 1[/math]. Thus
As [math]x[/math] approaches zero, [math]\sin x[/math] approaches [math]\sin 0 = 0[/math], and [math]\frac{\sin x}{x}[/math] approaches 1. Hence
For (c), no limit exists. The numerator approaches 1, and the denominator approaches zero. Note that we cannot even write the limit as [math]+\infty[/math] or [math]-\infty[/math] because [math]\sin x[/math] may be either positive or negative. As a result, [math]\frac{\cos x}{\sin x}[/math] takes on both arbitrarily large positive values and arbitrarily large negative values as [math]x[/math] approaches zero.
We are now ready to find [math]\frac{d}{dx} \sin x[/math]. The value of the derivative at an arbitrary number [math]a[/math] is by definition
As always, the game is to manipulate the quotient into a form in which we can see what the limit is. Since [math]\sin(a + t) = \sin a \cos t + \cos a \sin t[/math], we have
As [math]t[/math] approaches 0, the quantities [math]\cos a[/math] and [math]\sin a[/math] stay fixed. Moreover, [math]\frac{\sin t}{t}[/math] approaches 1, and [math]\frac{1 - \cos t}{t}[/math] approaches 0. Hence, the right side of the above equation approaches [math](\cos a) \cdot 1 - (\sin a) \cdot 0 = \cos a[/math]. We conclude that
Writing this result as an equality between functions, we get the simpler form
The derivative of the cosine may be found from the derivative of the sine using the Chain Rule and the twin identities [math]\cos x = \sin \Bigl(\frac{\pi}{2} - x \Bigr)[/math] and [math]\sin x = \cos \Bigl(\frac{\pi}{2} - x \Bigr)[/math] [see (1 6), page 286].
Writing this result in a single equation, we have
Example
Find the following derivatives.
These are routine exercises which combine the basic derivatives with the Chain Rule. For (a) we have
The solution to (b) is
For (c),
and for (d),
Every derivative formula has its corresponding integral formula. For the trigonometric
functions [math]\sin[/math] and [math]\cos[/math], they are
The proofs consist of simply verifying that the derivative of the proposed integral is the integrand. For example,
Example Find the following integrals.
The solutions use only the basic integral formulas and the fact that if [math]F' = f[/math], then [math]\int f(u) \frac{du}{dx} = F(u) + c[/math]. Integral (a) is simple enough to write down at a glance:
To do (b), let [math]u = x^2[/math]. Then [math]\frac{du}{dx} = 2x[/math], and
For (c), we let [math]u = \cos x[/math]. Then [math]\frac{du}{dx} = -\sin x[/math]. Hence
The graphs of the functions [math]\sin[/math] and [math]\cos[/math] are extremely interesting and important curves.
To begin with, let us consider the graph of [math]\sin x[/math] only for [math]0 \leq x \leq \frac{\pi}{2}[/math]. A few isolated points can be plotted immediately (see Table 2).
\medskip
[math]x[/math] | [math]y = \sin x[/math] |
0 | 0 |
[math]\frac{\pi}{6}[/math] | [math]\frac{1}{2}[/math] |
[math]\frac{\pi}{4}[/math] | [math]\frac{1}{2} \sqrt 2[/math] = 0.71 (approximately) |
[math]\frac{\pi}{3}[/math] | [math]\frac{1}{2} \sqrt 3[/math] = 0.87 (approximately) |
[math]\frac{\pi}{2}[/math] | 1 |
\medskip The slope of the graph is given by the derivative, [math]\frac{d}{dx} \sin x = \cos x[/math]. At the origin it is [math]\cos 0 = 1[/math], and, where [math]x = \frac{\pi}{2}[/math] the slope is [math]\cos \frac{\pi}{2} = 0[/math]. Since
we know that [math]\sin x[/math] is a strictly increasing function on the open interval [math]\Bigl(0, \frac{\pi}{2} \Bigr)[/math]. In addition, there are no points of inflection on the open interval and the curve is concave downward there because
On the other hand, the second derivative changes sign at [math]x = 0[/math], and so there is a point of inflection at the origin. With all these facts we can draw quite an accurate graph. It is shown in Figure 7.
It is now a simple matter to fill in as much of the rest of the graph of [math]\sin x[/math] as we like. For every real number [math]x[/math], the points [math]x[/math] and [math]\pi - x[/math] on the real number line are symmetrically located about the point [math]\frac{\pi}{2}[/math]. The midpoint between [math]x[/math] and [math]\pi - x[/math] is given by [math]\frac{x + (\pi - x)}{2} = \frac{\pi}{2}[/math]. As [math]x[/math] increases from 0 to [math]\frac{\pi}{2}[/math] the number [math]\pi - x[/math] decreases from [math]\pi[/math] to [math]\frac{\pi}{2}[/math]. Moreover,
It follows that the graph of [math]\sin x[/math] on the interval [math]\Bigl[\frac{\pi}{2}, \pi \Bigr][/math] is the mirror image of the graph on [math]\Bigl[0, \frac{\pi}{2} \Bigr][/math] reflected across the line [math]x = \frac{\pi}{2}[/math] . This is the dashed curve in Figure 7. Now, because [math]\sin x[/math] is an odd function, its graph for [math]x \leq 0[/math] is obtained by reflecting the graph for [math]x \geq 0[/math] about the origin (i.e., reflecting first about one coordinate axis and then the other). This gives us the graph for [math]-\pi \leq x \leq \pi[/math]. Finally, since [math]\sin x[/math] is a periodic function with period [math]2\pi[/math], its values repeat after intervals of length [math]2\pi[/math]. It follows that the entire graph of [math]\sin x[/math] is the infinite wave, part of which is shown in Figure 8.
The graph of [math]\cos x[/math] is obtained by translating (sliding) the graph of [math]\sin x[/math] to the left a distance [math]\frac{\pi}{2}[/math]. This geometric assertion is equivalent to the algebraic equation [math]\cos x = \sin \Bigl(x + \frac{\pi}{2} \Bigr).[/math] But this follows from the trigonometric identity
The graphs of [math]\cos x[/math] and [math]\sin x[/math] are shown together in Figure 9.
\end{exercise}
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.