guide:C3b799fb83: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\ex}[1]{\item } | |||
\newcommand{\sx}{\item} | |||
\newcommand{\x}{\sx} | |||
\newcommand{\sxlab}[1]{} | |||
\newcommand{\xlab}{\sxlab} | |||
\newcommand{\prov}[1] {\quad #1} | |||
\newcommand{\provx}[1] {\quad \mbox{#1}} | |||
\newcommand{\intext}[1]{\quad \mbox{#1} \quad} | |||
\newcommand{\R}{\mathrm{\bf R}} | |||
\newcommand{\Q}{\mathrm{\bf Q}} | |||
\newcommand{\Z}{\mathrm{\bf Z}} | |||
\newcommand{\C}{\mathrm{\bf C}} | |||
\newcommand{\dt}{\textbf} | |||
\newcommand{\goesto}{\rightarrow} | |||
\newcommand{\ddxof}[1]{\frac{d #1}{d x}} | |||
\newcommand{\ddx}{\frac{d}{dx}} | |||
\newcommand{\ddt}{\frac{d}{dt}} | |||
\newcommand{\dydx}{\ddxof y} | |||
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} | |||
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} | |||
\newcommand{\dist}{\mathrm{distance}} | |||
\newcommand{\arccot}{\mathrm{arccot\:}} | |||
\newcommand{\arccsc}{\mathrm{arccsc\:}} | |||
\newcommand{\arcsec}{\mathrm{arcsec\:}} | |||
\newcommand{\arctanh}{\mathrm{arctanh\:}} | |||
\newcommand{\arcsinh}{\mathrm{arcsinh\:}} | |||
\newcommand{\arccosh}{\mathrm{arccosh\:}} | |||
\newcommand{\sech}{\mathrm{sech\:}} | |||
\newcommand{\csch}{\mathrm{csch\:}} | |||
\newcommand{\conj}[1]{\overline{#1}} | |||
\newcommand{\mathds}{\mathbb} | |||
</math></div> | |||
\chapter*{Appendix B. Properties of the Definite Integral} | |||
Five basic properties of the definite integral are listed at the beginning of Section 4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise. The remaining two will be proved here. | |||
Let <math>f</math> be a function which is bounded on a closed interval <math>[a, b]</math>. This implies that <math>[a, b]</math> is contained in the domain of <math>f</math> and that there exists a positive number <math>B</math> such that <math>|f(x)| < B</math> for all <math>x</math> in <math>[a, b]</math>. We recall that, for every partition <math>\sigma</math> of <math>[a, b]</math>, there are defined the upper and lower sums for <math>f</math> relative to <math>\sigma</math>, which are denoted by <math>U_\sigma</math> and <math>L_\sigma</math>, respectively. Moreover, it has been shown (see page 168) that | |||
<math display="block"> | |||
L_\sigma \leq L_{\sigma \cup \tau} \leq U_{\sigma \cup \tau} \leq U_\tau, ( 1 ) | |||
</math> | |||
for any two partitions <math>\sigma</math> and <math>\tau</math> of <math>[a, b]</math>. The function <math>f</math> is defined to be integrable over <math>[a, b]</math> if there exists one and only one number, denoted <math>\int_a^b f</math>, with the property that | |||
<math display="block"> | |||
L_\sigma \leq \int_a^b f \leq U_\tau , | |||
</math> | |||
for any two partitions <math>\sigma</math> and <math>\tau</math> of <math>[a, b]</math>. It is an immediate consequence of this definition and the inequalities (1) that <math>f</math> is integrable over <math>[a, b]</math> if and only if, for any positive number <math>\epsilon</math>, there exists a partition <math>\sigma</math> of <math>[a, b]</math> such that <math>U_\sigma - L_\sigma < \epsilon</math>. A similar corollary, which we shall also usebin the subsequent proofs, is the statement that <math>f</math> is integrable over <math>[a, b]</math> and <math>\int_a^b f = J</math> if and only if, for every positive number <math>\epsilon</math>, there exists a partition <math>\sigma</math> of <math>[a, b]</math> such that <math>|U_\sigma - J| < \epsilon</math> and <math>|J - L_\sigma| < \epsilon</math>. | |||
The first property of the definite integral, which we shall establish in this section, is presented in the following theorem: | |||
\medskip | |||
'''THEOREM 1.''' | |||
The function <math>f</math> is integrable over the intervals <math>[a, b]</math> and <math>[b, c]</math> if and only if it is integrable over their union <math>[a, c]</math>. Furthermore, | |||
<math display="block"> | |||
\int_a^b f + \int_b^c f = \int_a^c f. | |||
</math> | |||
\proof We first assume that <math>f</math> is integrable over <math>[a, b]</math> and over <math>[b, c]</math>. Let <math>\epsilon</math> be an arbitrary positive number. Then there exists a partition <math>\sigma_1</math> of <math>[a, b]</math>, and a partition <math>\sigma_2</math> of <math>[b, c]</math> such that the following inequalities hold: | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\Big| U_{\sigma_1} - \int_a^b f \Big| < \frac{\epsilon}{2} , \;\;\; | |||
\Big| \int_a^b - L_{\sigma_1} f \Big| < \frac{\epsilon}{2} , \\ | |||
\Big| U_{\sigma_2} - \int_b^c f \Big| < \frac{\epsilon}{2} , \;\;\; | |||
\Big| \int_b^c - L_{\sigma_2} f \Big| < \frac{\epsilon}{2} . | |||
\end{eqnarray*} | |||
</math> | |||
It follows from these that | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\Big| (U_{\sigma_1} + U_{\sigma_2}) - \Big( \int_a^b f + \int_b^c f \Big) \Big| < \epsilon ,\\ | |||
\Big| \Big(\int_a^b f + \int_b^c f \Big) - \Big(L_{\sigma_1} + L_{\sigma_2} \Big) \Big| < \epsilon . | |||
\end{eqnarray*} | |||
</math> | |||
Let us set <math>{\sigma_1} \cup {\sigma_2} = \sigma</math>. This union is a partition of <math>[a, c]</math>, and it is obvious that | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
U_{\sigma_1} + U_{\sigma_2} = U_\sigma, \\ | |||
L_{\sigma_1} + L_{\sigma_2} = L_\sigma . | |||
\end{eqnarray*} | |||
</math> | |||
Hence | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\Big| U_\sigma - \Big(\int_a^b f + \int_b^c f \Big) \Big| \leq \epsilon, \\ | |||
\Big| \Big(\int_a^b f + \int_b^c f \Big) - L_\sigma \Big| \leq \epsilon . | |||
\end{eqnarray*} | |||
</math> | |||
These inequalities imply that <math>f</math> is integrable over <math>[a, c]</math> and also that | |||
<math display="block"> | |||
\int_a^c f = \int_a^b f + \int_b^c f . | |||
</math> | |||
It remains to prove that, if <math>f</math> is integrable over <math>[a, c]</math>, then it is integrable over <math>[a, b]</math> and over <math>[b, c]</math>. We choose an arbitrary positive number <math>\epsilon</math>. Since <math>f</math> is integrable over <math>[a, c]</math>, there exists a partition <math>\sigma</math> of <math>[a, c]</math> such that <math>U_\sigma - L_\sigma < \epsilon</math>. Let us form a refinement of the partition <math>\sigma</math> by adjoining the number <math>b</math>. That is, we set | |||
<math display="block"> | |||
\sigma' = \sigma \cup \{ b \}. | |||
</math> | |||
(It is, of course, possible that <math>\sigma</math> already contains <math>b</math>, in which case <math>\sigma' = \sigma</math>.) Then | |||
<math display="block"> | |||
L_\sigma \leq L_{\sigma'} \leq U_{\sigma'} \leq U_{\sigma'}, | |||
</math> | |||
from which it follows that <math>U_{\sigma'} - L_{\sigma'}, < \epsilon</math>. But, since <math>b</math> belongs to <math>\sigma'</math>, we can write <math>\sigma' = \sigma_1 \cup \sigma_2</math>, where <math>\sigma_1</math> is a partition of <math>[a, b]</math> and <math>\sigma_2</math> is a partition of <math>[b, c]</math>. Moreover, | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
U_{\sigma'} = U_{\sigma_1} + U_{\sigma_2},\\ | |||
L_{\sigma'} = L_{\sigma_1} + L_{\sigma_2} . | |||
\end{eqnarray*} | |||
</math> | |||
Hence | |||
<math display="block"> | |||
(U_{\sigma_1} - L_{\sigma_1}) + (U_{\sigma_2} - L_{\sigma_2}) = U_{\sigma'} - L_{\sigma'} < \epsilon, | |||
</math> | |||
Since <math>U_{\sigma_1} - L_{\sigma_1}</math> and <math>U_{\sigma_2} - L_{\sigma_2}</math> | |||
are both nonnegative, it follows that | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
U_{\sigma_1} - L_{\sigma_1} < \epsilon,\\ | |||
U_{\sigma_2} - L_{\sigma_2} < \epsilon . | |||
\end{eqnarray*} | |||
</math> | |||
The first of these inequalities implies that <math>f</math> is integrable over <math>[a, b]</math>, and the second that <math>f</math> is integrable over <math>[b, c]</math>. This completes the proof of Theorem 1. | |||
The second result to be proved is the following: | |||
\medskip | |||
'''THEOREM 2.''' | |||
If <math>f</math> and <math>g</math> are integrable over <math>[a, b]</math>, then so is their sum and | |||
<math display="block"> | |||
\int_a^b (f + g) = \int_a^b f + \int_a^b g . | |||
</math> | |||
\medskip | |||
\proof Let <math>\epsilon</math> be an arbitrary positive number. By taking, if necessary, the common refinement <math>\sigma_1 \cup \sigma_2</math> of two partitions of <math>[a, b]</math>, we may select a partition <math>\sigma</math> of <math>[a, b]</math> such that | |||
<math display="block"> | |||
\begin{array}{ll} | |||
\Big| U_\sigma^{(f)} - \int_a^b f \Big| < \frac{\epsilon}{2} , \;\;\;& | |||
\Big| \int_a^b f - L_\sigma^{(f)} \Big| < \frac{\epsilon}{2} , \\ | |||
\Big| U_\sigma^{(g)} - \int_a^b g \Big| < \frac{\epsilon}{2},\;\;\;& | |||
\Big| \int_a^b g - L_\sigma^{(g)} \Big| < \frac{\epsilon}{2} , | |||
\end{array} | |||
</math> | |||
where <math>U_\sigma^{(f)}</math> and <math>L_\sigma^{(f)}</math> are, respectively, the upper and lower sums for <math>f</math> relative to <math>\sigma</math>, and <math>U_\sigma^{(g)}</math> and <math>L_\sigma^{(g)}</math> are the same for <math>g</math>. We conclude from the above inequalities that | |||
<math display="block"> | |||
\Big| ( U_\sigma^{(f)} + U_\sigma^{(g)} ) - \Big(\int_a^b f + \int_a^b g \Big) \Big| < \epsilon, ( 2 ) | |||
</math> | |||
<math display="block"> | |||
\Big| \Big(\int_a^b f + \int_a^b g \Big) - (L_\sigma^{(f)} + L_\sigma^{(g)}) \Big| < \epsilon . ( 3 ) | |||
</math> | |||
Let <math>[x_{i-1}, x_i]</math> be the ith subinterval of the partition <math>\sigma</math>. We denote by <math>M_i^{(f)}</math> and <math>M_i^{(g)}</math> the least upper bounds of the values of <math>f</math> and of <math>g</math>, respectively, on | |||
<math>[x_{i-1}, x_i]</math>, and by <math>m_i^{(f)}</math> and <math>m_i^{(g)}</math> the analogous greatest lower bounds. Then | |||
<math display="block"> | |||
m_i^{(f)} + m_i^{(g)} \leq f(x) + g(x) \leq M_i^{(f)} + M_i^{(g)}, | |||
</math> | |||
for every <math>x</math> in <math>[x_{i-1}, x_i]</math>. It follows that | |||
<math display="block"> | |||
m_i^{(f)} + m_i^{(g)} \leq m_i^{(f+g)} \leq M_i^{(f+g)} \leq M_i^{(f)} + M_i^{(g)} , | |||
</math> | |||
where <math>m_i^{(f+g)}</math> and <math>M_i^{(f+g)}</math> are, respectively, the greatest lower bound and the least upper bound of the values of <math>f + g</math> on <math>[x_{i-1}, x_i]</math>. By multiplying each term in the preceding chain of inequalities by <math>(x_i - x_{i-1})</math> and then summing on <math>i</math>, we obtain | |||
<math display="block"> | |||
L_\sigma^{(f)} + L_\sigma^{(g)} \leq L_\sigma^{(f+g)} \leq U_\sigma^{(f+g)} \leq U_\sigma^{(f)} + U_\sigma^{(g)}, (4 ) | |||
</math> | |||
where <math>U_\sigma^{(f+g)}</math> and <math>L_\sigma^{(f+g)}</math> are the upper and lower sums, respectively, for <math>f + g</math> relative to <math>\sigma</math>. The inequalities (2), (3), and (4) imply that | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\Big| U_\sigma^{(f+g)} - \Big(\int_a^b f + \int_a^b g \Big) \Big| < \epsilon, \\ | |||
\Big| \Big(\int_a^b f + \int_a^b g \Big) - L_\sigma^{(f+g)} \Big| < \epsilon . | |||
\end{eqnarray*} | |||
</math> | |||
It follows from these two inequalities that the function <math>f + g</math> is integrable over <math>[a, b]</math> and that | |||
<math display="block"> | |||
\int_a^b (f + g) = \int_a^b f + \int_a^b g. | |||
</math> | |||
This completes the proof of Theorem 2.==General references== | |||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Revision as of 00:10, 3 November 2024
\chapter*{Appendix B. Properties of the Definite Integral} Five basic properties of the definite integral are listed at the beginning of Section 4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise. The remaining two will be proved here. Let [math]f[/math] be a function which is bounded on a closed interval [math][a, b][/math]. This implies that [math][a, b][/math] is contained in the domain of [math]f[/math] and that there exists a positive number [math]B[/math] such that [math]|f(x)| \lt B[/math] for all [math]x[/math] in [math][a, b][/math]. We recall that, for every partition [math]\sigma[/math] of [math][a, b][/math], there are defined the upper and lower sums for [math]f[/math] relative to [math]\sigma[/math], which are denoted by [math]U_\sigma[/math] and [math]L_\sigma[/math], respectively. Moreover, it has been shown (see page 168) that
for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a, b][/math]. The function [math]f[/math] is defined to be integrable over [math][a, b][/math] if there exists one and only one number, denoted [math]\int_a^b f[/math], with the property that
for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a, b][/math]. It is an immediate consequence of this definition and the inequalities (1) that [math]f[/math] is integrable over [math][a, b][/math] if and only if, for any positive number [math]\epsilon[/math], there exists a partition [math]\sigma[/math] of [math][a, b][/math] such that [math]U_\sigma - L_\sigma \lt \epsilon[/math]. A similar corollary, which we shall also usebin the subsequent proofs, is the statement that [math]f[/math] is integrable over [math][a, b][/math] and [math]\int_a^b f = J[/math] if and only if, for every positive number [math]\epsilon[/math], there exists a partition [math]\sigma[/math] of [math][a, b][/math] such that [math]|U_\sigma - J| \lt \epsilon[/math] and [math]|J - L_\sigma| \lt \epsilon[/math].
The first property of the definite integral, which we shall establish in this section, is presented in the following theorem: \medskip THEOREM 1. The function [math]f[/math] is integrable over the intervals [math][a, b][/math] and [math][b, c][/math] if and only if it is integrable over their union [math][a, c][/math]. Furthermore,
\proof We first assume that [math]f[/math] is integrable over [math][a, b][/math] and over [math][b, c][/math]. Let [math]\epsilon[/math] be an arbitrary positive number. Then there exists a partition [math]\sigma_1[/math] of [math][a, b][/math], and a partition [math]\sigma_2[/math] of [math][b, c][/math] such that the following inequalities hold:
It follows from these that
Let us set [math]{\sigma_1} \cup {\sigma_2} = \sigma[/math]. This union is a partition of [math][a, c][/math], and it is obvious that
Hence
These inequalities imply that [math]f[/math] is integrable over [math][a, c][/math] and also that
It remains to prove that, if [math]f[/math] is integrable over [math][a, c][/math], then it is integrable over [math][a, b][/math] and over [math][b, c][/math]. We choose an arbitrary positive number [math]\epsilon[/math]. Since [math]f[/math] is integrable over [math][a, c][/math], there exists a partition [math]\sigma[/math] of [math][a, c][/math] such that [math]U_\sigma - L_\sigma \lt \epsilon[/math]. Let us form a refinement of the partition [math]\sigma[/math] by adjoining the number [math]b[/math]. That is, we set
(It is, of course, possible that [math]\sigma[/math] already contains [math]b[/math], in which case [math]\sigma' = \sigma[/math].) Then
from which it follows that [math]U_{\sigma'} - L_{\sigma'}, \lt \epsilon[/math]. But, since [math]b[/math] belongs to [math]\sigma'[/math], we can write [math]\sigma' = \sigma_1 \cup \sigma_2[/math], where [math]\sigma_1[/math] is a partition of [math][a, b][/math] and [math]\sigma_2[/math] is a partition of [math][b, c][/math]. Moreover,
Hence
Since [math]U_{\sigma_1} - L_{\sigma_1}[/math] and [math]U_{\sigma_2} - L_{\sigma_2}[/math] are both nonnegative, it follows that
The first of these inequalities implies that [math]f[/math] is integrable over [math][a, b][/math], and the second that [math]f[/math] is integrable over [math][b, c][/math]. This completes the proof of Theorem 1. The second result to be proved is the following: \medskip THEOREM 2. If [math]f[/math] and [math]g[/math] are integrable over [math][a, b][/math], then so is their sum and
\medskip \proof Let [math]\epsilon[/math] be an arbitrary positive number. By taking, if necessary, the common refinement [math]\sigma_1 \cup \sigma_2[/math] of two partitions of [math][a, b][/math], we may select a partition [math]\sigma[/math] of [math][a, b][/math] such that
where [math]U_\sigma^{(f)}[/math] and [math]L_\sigma^{(f)}[/math] are, respectively, the upper and lower sums for [math]f[/math] relative to [math]\sigma[/math], and [math]U_\sigma^{(g)}[/math] and [math]L_\sigma^{(g)}[/math] are the same for [math]g[/math]. We conclude from the above inequalities that
Let [math][x_{i-1}, x_i][/math] be the ith subinterval of the partition [math]\sigma[/math]. We denote by [math]M_i^{(f)}[/math] and [math]M_i^{(g)}[/math] the least upper bounds of the values of [math]f[/math] and of [math]g[/math], respectively, on [math][x_{i-1}, x_i][/math], and by [math]m_i^{(f)}[/math] and [math]m_i^{(g)}[/math] the analogous greatest lower bounds. Then
for every [math]x[/math] in [math][x_{i-1}, x_i][/math]. It follows that
where [math]m_i^{(f+g)}[/math] and [math]M_i^{(f+g)}[/math] are, respectively, the greatest lower bound and the least upper bound of the values of [math]f + g[/math] on [math][x_{i-1}, x_i][/math]. By multiplying each term in the preceding chain of inequalities by [math](x_i - x_{i-1})[/math] and then summing on [math]i[/math], we obtain
where [math]U_\sigma^{(f+g)}[/math] and [math]L_\sigma^{(f+g)}[/math] are the upper and lower sums, respectively, for [math]f + g[/math] relative to [math]\sigma[/math]. The inequalities (2), (3), and (4) imply that
It follows from these two inequalities that the function [math]f + g[/math] is integrable over [math][a, b][/math] and that
This completes the proof of Theorem 2.==General references== Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.